project / app.py
Orangefish's picture
Update app.py
1ba1adc
raw
history blame
2.36 kB
#!/usr/bin/env python
# coding: utf-8
# In[37]:
import gradio as gr
import hopsworks
import joblib
import pandas as pd
import numpy as np
import folium
import sklearn.preprocessing as proc
import json
import time
from datetime import timedelta, datetime
from branca.element import Figure
from functions import get_weather_data, get_weather_df, get_weather_json_quick
def greet(name):
X = pd.DataFrame()
for i in range(14):
# Get, rename column and rescalef
next_day_date = datetime.today() - timedelta(days=i)
next_day = next_day_date.strftime ('%Y-%m-%d')
json = get_weather_json_quick(next_day)
temp = get_weather_data(json)
X = X.append(temp, ignore_index=True)
# In[38]:
X.head()
X.columns.values.tolist()
# In[39]:
X.drop('preciptype', inplace = True, axis = 1)
X.drop('severerisk', inplace = True, axis = 1)
X.drop('stations', inplace = True, axis = 1)
X.drop('sunrise', inplace = True, axis = 1)
X.drop('sunset', inplace = True, axis = 1)
X.drop('moonphase', inplace = True, axis = 1)
X.drop('description', inplace = True, axis = 1)
X.drop('icon', inplace = True, axis = 1)
X.drop('datetime', inplace = True, axis = 1)
# In[40]:
X.head()
# In[41]:
X = X.rename(columns={'sunriseEpoch':'pm25'})
X = X.rename(columns={'sunsetEpoch':'pm10'})
X = X.rename(columns={'source':'o3'})
X = X.rename(columns={'normal':'aqi'})
X = X.rename(columns={'datetimeEpoch':'city'})
# In[42]:
X.head()
# In[43]:
# X = X.drop(columns = ['conditions', "pm25", "pm10", "o3", "aqi"])
X = X.drop(columns = ['conditions', "pm25", "pm10", "o3"])
X.insert(0,"aqi",0)
X.insert(0,"o3",0)
X.insert(0,"pm10",0)
X.insert(0,"pm25",0)
X.insert(27,"conditions",0)
# In[44]:
X.head()
# In[46]:
preds = model.predict(X)
# In[51]:
print(preds)
# In[53]:
str1 = ""
for x in range(8):
if(x != 0):
str1 += (datetime.now() + timedelta(days=x)).strftime('%Y-%m-%d') + " predicted aqi: " + str(int(preds[x]))+"\n"
print(str1)
return str1
# In[ ]:
project = hopsworks.login()
mr = project.get_model_registry()
# In[50]:
model = mr.get_model("gradient_boost_model",version = 4)
model_dir = model.download()
model = joblib.load(model_dir + "/model.pkl")
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
if __name__ == "__main__":
demo.launch()