Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,26 +3,21 @@ import base64
|
|
| 3 |
import json
|
| 4 |
from datetime import datetime
|
| 5 |
import traceback
|
| 6 |
-
from typing import
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
from huggingface_hub import HfApi, InferenceClient
|
| 10 |
from fastmcp import FastMCP
|
| 11 |
|
| 12 |
-
|
| 13 |
HF_DATASET_REPO = os.environ.get("HF_DATASET_REPO", "OppaAI/Robot_MCP")
|
| 14 |
HF_VLM_MODEL = os.environ.get("HF_VLM_MODEL", "Qwen/Qwen2.5-VL-7B-Instruct")
|
| 15 |
|
| 16 |
-
mcp = FastMCP("Robot_MCP_Server")
|
| 17 |
|
| 18 |
|
| 19 |
-
# -------------------------------
|
| 20 |
-
# Upload helper
|
| 21 |
-
# -------------------------------
|
| 22 |
def upload_image(image_b64: str, hf_token: str):
|
| 23 |
try:
|
| 24 |
image_bytes = base64.b64decode(image_b64)
|
| 25 |
-
size_bytes = len(image_bytes)
|
| 26 |
|
| 27 |
os.makedirs("/tmp", exist_ok=True)
|
| 28 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
|
@@ -32,7 +27,6 @@ def upload_image(image_b64: str, hf_token: str):
|
|
| 32 |
f.write(image_bytes)
|
| 33 |
|
| 34 |
filename = f"robot_{timestamp}.jpg"
|
| 35 |
-
|
| 36 |
api = HfApi()
|
| 37 |
api.upload_file(
|
| 38 |
path_or_fileobj=local_path,
|
|
@@ -43,16 +37,13 @@ def upload_image(image_b64: str, hf_token: str):
|
|
| 43 |
)
|
| 44 |
|
| 45 |
url = f"https://huggingface.co/datasets/{HF_DATASET_REPO}/resolve/main/tmp/{filename}"
|
| 46 |
-
return local_path, url, filename,
|
| 47 |
|
| 48 |
except Exception:
|
| 49 |
traceback.print_exc()
|
| 50 |
return None, None, None, 0
|
| 51 |
|
| 52 |
|
| 53 |
-
# -------------------------------
|
| 54 |
-
# Safe JSON parse
|
| 55 |
-
# -------------------------------
|
| 56 |
def safe_parse_json_from_text(text: str):
|
| 57 |
if not text:
|
| 58 |
return None
|
|
@@ -73,42 +64,34 @@ def safe_parse_json_from_text(text: str):
|
|
| 73 |
return None
|
| 74 |
|
| 75 |
|
| 76 |
-
#
|
| 77 |
-
#
|
| 78 |
-
#
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
def
|
| 84 |
-
if isinstance(payload, str):
|
| 85 |
-
try:
|
| 86 |
-
payload = json.loads(payload)
|
| 87 |
-
except:
|
| 88 |
-
return {"error": "Invalid JSON payload"}
|
| 89 |
-
|
| 90 |
hf_token = payload.get("hf_token")
|
| 91 |
-
if not hf_token:
|
| 92 |
-
return {"error": "hf_token missing"}
|
| 93 |
-
|
| 94 |
-
robot_id = payload.get("robot_id", "unknown")
|
| 95 |
image_b64 = payload.get("image_b64")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
if not image_b64:
|
| 97 |
-
return {"error": "image_b64
|
| 98 |
|
| 99 |
-
# Upload
|
| 100 |
_, hf_url, _, size_bytes = upload_image(image_b64, hf_token)
|
| 101 |
if not hf_url:
|
| 102 |
return {"error": "Image upload failed"}
|
| 103 |
|
| 104 |
-
# VLM
|
| 105 |
system_prompt = """
|
| 106 |
-
Respond in STRICT JSON ONLY
|
| 107 |
{
|
| 108 |
"description": "...",
|
| 109 |
"human": "...",
|
| 110 |
"environment": "...",
|
| 111 |
-
"objects": []
|
| 112 |
}
|
| 113 |
"""
|
| 114 |
|
|
@@ -121,7 +104,6 @@ Respond in STRICT JSON ONLY.
|
|
| 121 |
]
|
| 122 |
|
| 123 |
client = InferenceClient(token=hf_token)
|
| 124 |
-
|
| 125 |
try:
|
| 126 |
resp = client.chat.completions.create(
|
| 127 |
model=HF_VLM_MODEL,
|
|
@@ -133,45 +115,30 @@ Respond in STRICT JSON ONLY.
|
|
| 133 |
return {"status": "error", "message": str(e)}
|
| 134 |
|
| 135 |
vlm_output = resp.choices[0].message.content.strip()
|
| 136 |
-
parsed = safe_parse_json_from_text(vlm_output)
|
| 137 |
-
|
| 138 |
-
if parsed is None:
|
| 139 |
-
return {
|
| 140 |
-
"status": "model_no_json",
|
| 141 |
-
"vlm_raw": vlm_output,
|
| 142 |
-
"message": "Invalid JSON returned"
|
| 143 |
-
}
|
| 144 |
-
|
| 145 |
-
# Ensure "objects" is a list
|
| 146 |
-
objects = parsed.get("objects", [])
|
| 147 |
-
if not isinstance(objects, list):
|
| 148 |
-
objects = []
|
| 149 |
|
| 150 |
return {
|
| 151 |
"status": "success",
|
| 152 |
"robot_id": robot_id,
|
| 153 |
"file_size_bytes": size_bytes,
|
| 154 |
"image_url": hf_url,
|
| 155 |
-
"
|
| 156 |
-
"human": parsed.get("human"),
|
| 157 |
-
"environment": parsed.get("environment"),
|
| 158 |
-
"objects": objects, # ← new field
|
| 159 |
"vlm_raw": vlm_output
|
| 160 |
}
|
| 161 |
|
| 162 |
-
|
| 163 |
-
#
|
| 164 |
-
#
|
|
|
|
| 165 |
def process_json(payload):
|
| 166 |
-
return
|
| 167 |
|
| 168 |
|
| 169 |
app = gr.Interface(
|
| 170 |
fn=process_json,
|
| 171 |
-
inputs=gr.JSON(
|
| 172 |
-
outputs=gr.JSON(
|
| 173 |
title="Robot MCP Server",
|
| 174 |
-
description="JSON endpoint for robot vision pipeline.",
|
| 175 |
api_name="predict"
|
| 176 |
)
|
| 177 |
|
|
|
|
| 3 |
import json
|
| 4 |
from datetime import datetime
|
| 5 |
import traceback
|
| 6 |
+
from typing import Dict, Any
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
from huggingface_hub import HfApi, InferenceClient
|
| 10 |
from fastmcp import FastMCP
|
| 11 |
|
|
|
|
| 12 |
HF_DATASET_REPO = os.environ.get("HF_DATASET_REPO", "OppaAI/Robot_MCP")
|
| 13 |
HF_VLM_MODEL = os.environ.get("HF_VLM_MODEL", "Qwen/Qwen2.5-VL-7B-Instruct")
|
| 14 |
|
| 15 |
+
mcp = FastMCP("Robot_MCP_Server") # <-- Important
|
| 16 |
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
def upload_image(image_b64: str, hf_token: str):
|
| 19 |
try:
|
| 20 |
image_bytes = base64.b64decode(image_b64)
|
|
|
|
| 21 |
|
| 22 |
os.makedirs("/tmp", exist_ok=True)
|
| 23 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
|
|
|
| 27 |
f.write(image_bytes)
|
| 28 |
|
| 29 |
filename = f"robot_{timestamp}.jpg"
|
|
|
|
| 30 |
api = HfApi()
|
| 31 |
api.upload_file(
|
| 32 |
path_or_fileobj=local_path,
|
|
|
|
| 37 |
)
|
| 38 |
|
| 39 |
url = f"https://huggingface.co/datasets/{HF_DATASET_REPO}/resolve/main/tmp/{filename}"
|
| 40 |
+
return local_path, url, filename, len(image_bytes)
|
| 41 |
|
| 42 |
except Exception:
|
| 43 |
traceback.print_exc()
|
| 44 |
return None, None, None, 0
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
|
|
|
| 47 |
def safe_parse_json_from_text(text: str):
|
| 48 |
if not text:
|
| 49 |
return None
|
|
|
|
| 64 |
return None
|
| 65 |
|
| 66 |
|
| 67 |
+
# ---------------------------------------------------
|
| 68 |
+
# TRUE MCP TOOL — THIS must be exposed to MCP client
|
| 69 |
+
# ---------------------------------------------------
|
| 70 |
+
@mcp.tool(
|
| 71 |
+
name="robot_watch",
|
| 72 |
+
description="Analyze a base64 image using Qwen VLM and return structured JSON."
|
| 73 |
+
)
|
| 74 |
+
def robot_watch(payload: Dict[str, Any]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
hf_token = payload.get("hf_token")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
image_b64 = payload.get("image_b64")
|
| 77 |
+
robot_id = payload.get("robot_id", "unknown")
|
| 78 |
+
|
| 79 |
+
if not hf_token:
|
| 80 |
+
return {"error": "Missing hf_token"}
|
| 81 |
if not image_b64:
|
| 82 |
+
return {"error": "Missing image_b64"}
|
| 83 |
|
|
|
|
| 84 |
_, hf_url, _, size_bytes = upload_image(image_b64, hf_token)
|
| 85 |
if not hf_url:
|
| 86 |
return {"error": "Image upload failed"}
|
| 87 |
|
|
|
|
| 88 |
system_prompt = """
|
| 89 |
+
Respond in STRICT JSON ONLY:
|
| 90 |
{
|
| 91 |
"description": "...",
|
| 92 |
"human": "...",
|
| 93 |
"environment": "...",
|
| 94 |
+
"objects": []
|
| 95 |
}
|
| 96 |
"""
|
| 97 |
|
|
|
|
| 104 |
]
|
| 105 |
|
| 106 |
client = InferenceClient(token=hf_token)
|
|
|
|
| 107 |
try:
|
| 108 |
resp = client.chat.completions.create(
|
| 109 |
model=HF_VLM_MODEL,
|
|
|
|
| 115 |
return {"status": "error", "message": str(e)}
|
| 116 |
|
| 117 |
vlm_output = resp.choices[0].message.content.strip()
|
| 118 |
+
parsed = safe_parse_json_from_text(vlm_output) or {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
return {
|
| 121 |
"status": "success",
|
| 122 |
"robot_id": robot_id,
|
| 123 |
"file_size_bytes": size_bytes,
|
| 124 |
"image_url": hf_url,
|
| 125 |
+
"result": parsed,
|
|
|
|
|
|
|
|
|
|
| 126 |
"vlm_raw": vlm_output
|
| 127 |
}
|
| 128 |
|
| 129 |
+
|
| 130 |
+
# ---------------------------------------------------
|
| 131 |
+
# Gradio UI — separate from MCP tool layer
|
| 132 |
+
# ---------------------------------------------------
|
| 133 |
def process_json(payload):
|
| 134 |
+
return robot_watch(payload)
|
| 135 |
|
| 136 |
|
| 137 |
app = gr.Interface(
|
| 138 |
fn=process_json,
|
| 139 |
+
inputs=gr.JSON(),
|
| 140 |
+
outputs=gr.JSON(),
|
| 141 |
title="Robot MCP Server",
|
|
|
|
| 142 |
api_name="predict"
|
| 143 |
)
|
| 144 |
|