Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
import base64
|
| 3 |
-
import requests
|
| 4 |
-
import tempfile
|
| 5 |
import gradio as gr
|
| 6 |
from huggingface_hub import upload_file, InferenceClient
|
| 7 |
-
|
| 8 |
|
| 9 |
# --- Config ---
|
| 10 |
HF_DATASET_REPO = "OppaAI/Robot_MCP"
|
|
@@ -14,11 +12,11 @@ HF_VLM_MODEL = "Qwen/Qwen2.5-VL-7B-Instruct"
|
|
| 14 |
def save_and_upload_image(image_b64, hf_token):
|
| 15 |
"""Save image to /tmp and upload to HF dataset."""
|
| 16 |
image_bytes = base64.b64decode(image_b64)
|
| 17 |
-
local_tmp_path =
|
| 18 |
with open(local_tmp_path, "wb") as f:
|
| 19 |
f.write(image_bytes)
|
| 20 |
|
| 21 |
-
path_in_repo =
|
| 22 |
upload_file(
|
| 23 |
path_or_fileobj=local_tmp_path,
|
| 24 |
path_in_repo=path_in_repo,
|
|
@@ -34,54 +32,63 @@ def save_and_upload_image(image_b64, hf_token):
|
|
| 34 |
# --- Main MCP function ---
|
| 35 |
def process_and_describe(payload: dict):
|
| 36 |
try:
|
| 37 |
-
# 1️⃣ Use robot-sent token
|
| 38 |
hf_token = payload.get("hf_token")
|
| 39 |
if not hf_token:
|
| 40 |
return {"error": "HF token not provided in payload."}
|
| 41 |
|
| 42 |
robot_id = payload.get("robot_id", "unknown")
|
| 43 |
-
image_b64 = payload
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
#
|
| 46 |
local_tmp_path, hf_url, path_in_repo, size_bytes = save_and_upload_image(image_b64, hf_token)
|
| 47 |
|
| 48 |
-
#
|
| 49 |
hf_client = InferenceClient(token=hf_token)
|
| 50 |
|
| 51 |
-
#
|
| 52 |
system_prompt = """
|
| 53 |
-
You are a helpful robot assistant.
|
| 54 |
-
When receiving an image, you must:
|
| 55 |
1. Describe the image in detail.
|
| 56 |
-
2. Suggest what the robot should do next based on what it sees
|
| 57 |
-
-
|
| 58 |
-
-
|
| 59 |
-
-
|
| 60 |
-
-
|
| 61 |
-
Always
|
| 62 |
-
{"move": "
|
| 63 |
"""
|
| 64 |
|
| 65 |
-
# 5️⃣ Prepare multimodal message payload
|
| 66 |
messages_payload = [
|
| 67 |
{"role": "system", "content": system_prompt},
|
| 68 |
-
{
|
| 69 |
-
"
|
| 70 |
-
"
|
| 71 |
-
|
| 72 |
-
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_b64}"}}
|
| 73 |
-
]
|
| 74 |
-
}
|
| 75 |
]
|
| 76 |
|
| 77 |
-
#
|
| 78 |
chat_completion = hf_client.chat.completions.create(
|
| 79 |
model=HF_VLM_MODEL,
|
| 80 |
messages=messages_payload,
|
| 81 |
-
max_tokens=
|
| 82 |
)
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
return {
|
| 87 |
"saved_to_hf_hub": True,
|
|
@@ -90,7 +97,9 @@ def process_and_describe(payload: dict):
|
|
| 90 |
"image_url": hf_url,
|
| 91 |
"file_size_bytes": size_bytes,
|
| 92 |
"robot_id": robot_id,
|
| 93 |
-
"vlm_response": vlm_text
|
|
|
|
|
|
|
| 94 |
}
|
| 95 |
|
| 96 |
except Exception as e:
|
|
|
|
| 1 |
import os
|
| 2 |
import base64
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from huggingface_hub import upload_file, InferenceClient
|
| 5 |
+
import json
|
| 6 |
|
| 7 |
# --- Config ---
|
| 8 |
HF_DATASET_REPO = "OppaAI/Robot_MCP"
|
|
|
|
| 12 |
def save_and_upload_image(image_b64, hf_token):
|
| 13 |
"""Save image to /tmp and upload to HF dataset."""
|
| 14 |
image_bytes = base64.b64decode(image_b64)
|
| 15 |
+
local_tmp_path = "/tmp/tmp.jpg"
|
| 16 |
with open(local_tmp_path, "wb") as f:
|
| 17 |
f.write(image_bytes)
|
| 18 |
|
| 19 |
+
path_in_repo = "images/tmp.jpg"
|
| 20 |
upload_file(
|
| 21 |
path_or_fileobj=local_tmp_path,
|
| 22 |
path_in_repo=path_in_repo,
|
|
|
|
| 32 |
# --- Main MCP function ---
|
| 33 |
def process_and_describe(payload: dict):
|
| 34 |
try:
|
|
|
|
| 35 |
hf_token = payload.get("hf_token")
|
| 36 |
if not hf_token:
|
| 37 |
return {"error": "HF token not provided in payload."}
|
| 38 |
|
| 39 |
robot_id = payload.get("robot_id", "unknown")
|
| 40 |
+
image_b64 = payload.get("image_b64")
|
| 41 |
+
if not image_b64:
|
| 42 |
+
return {"error": "No image provided."}
|
| 43 |
|
| 44 |
+
# Save & upload
|
| 45 |
local_tmp_path, hf_url, path_in_repo, size_bytes = save_and_upload_image(image_b64, hf_token)
|
| 46 |
|
| 47 |
+
# Init HF client
|
| 48 |
hf_client = InferenceClient(token=hf_token)
|
| 49 |
|
| 50 |
+
# System prompt: describe + suggest action
|
| 51 |
system_prompt = """
|
| 52 |
+
You are a helpful robot assistant.
|
|
|
|
| 53 |
1. Describe the image in detail.
|
| 54 |
+
2. Suggest what the robot should do next based on what it sees:
|
| 55 |
+
- Human figure → say 'Hi'.
|
| 56 |
+
- Ball → move towards it.
|
| 57 |
+
- Obstacles → stop or avoid.
|
| 58 |
+
- Red button → press it.
|
| 59 |
+
Always respond in JSON:
|
| 60 |
+
{"description": "...", "action": {"move": "...", "interact": "..."}}
|
| 61 |
"""
|
| 62 |
|
|
|
|
| 63 |
messages_payload = [
|
| 64 |
{"role": "system", "content": system_prompt},
|
| 65 |
+
{"role": "user", "content": [
|
| 66 |
+
{"type": "text", "text": "Here is an image."},
|
| 67 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_b64}"}}
|
| 68 |
+
]}
|
|
|
|
|
|
|
|
|
|
| 69 |
]
|
| 70 |
|
| 71 |
+
# Call VLM
|
| 72 |
chat_completion = hf_client.chat.completions.create(
|
| 73 |
model=HF_VLM_MODEL,
|
| 74 |
messages=messages_payload,
|
| 75 |
+
max_tokens=300
|
| 76 |
)
|
| 77 |
|
| 78 |
+
# Robustly extract text
|
| 79 |
+
try:
|
| 80 |
+
vlm_text = chat_completion.choices[0].message.content.strip()
|
| 81 |
+
except Exception:
|
| 82 |
+
# fallback if structure is different
|
| 83 |
+
vlm_text = str(chat_completion)
|
| 84 |
+
|
| 85 |
+
# Attempt to parse JSON from VLM
|
| 86 |
+
action_data = {}
|
| 87 |
+
try:
|
| 88 |
+
action_data = json.loads(vlm_text)
|
| 89 |
+
except Exception:
|
| 90 |
+
# If VLM didn't return valid JSON, wrap text as description
|
| 91 |
+
action_data = {"description": vlm_text, "action": {"move": "unknown", "interact": "unknown"}}
|
| 92 |
|
| 93 |
return {
|
| 94 |
"saved_to_hf_hub": True,
|
|
|
|
| 97 |
"image_url": hf_url,
|
| 98 |
"file_size_bytes": size_bytes,
|
| 99 |
"robot_id": robot_id,
|
| 100 |
+
"vlm_response": vlm_text,
|
| 101 |
+
"vlm_action": action_data.get("action", {}),
|
| 102 |
+
"vlm_description": action_data.get("description", "")
|
| 103 |
}
|
| 104 |
|
| 105 |
except Exception as e:
|