|
import torch |
|
|
|
import gradio as gr |
|
import pytube as pt |
|
from transformers import pipeline |
|
|
|
MODEL_NAME = "openai/whisper-large-v2" |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
|
|
all_special_ids = pipe.tokenizer.all_special_ids |
|
transcribe_token_id = all_special_ids[-5] |
|
translate_token_id = all_special_ids[-6] |
|
|
|
|
|
def transcribe(microphone, file_upload, task): |
|
warn_output = "" |
|
if (microphone is not None) and (file_upload is not None): |
|
warn_output = ( |
|
"WARNING: You've uploaded an audio file and used the microphone. " |
|
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" |
|
) |
|
|
|
elif (microphone is None) and (file_upload is None): |
|
return "ERROR: You have to either use the microphone or upload an audio file" |
|
|
|
file = microphone if microphone is not None else file_upload |
|
|
|
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] |
|
|
|
text = pipe(file)["text"] |
|
|
|
return warn_output + text |
|
|
|
|
|
def _return_yt_html_embed(yt_url): |
|
video_id = yt_url.split("?v=")[-1] |
|
HTML_str = ( |
|
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' |
|
" </center>" |
|
) |
|
return HTML_str |
|
|
|
|
|
def yt_transcribe(yt_url, task): |
|
yt = pt.YouTube(yt_url) |
|
html_embed_str = _return_yt_html_embed(yt_url) |
|
stream = yt.streams.filter(only_audio=True)[0] |
|
stream.download(filename="audio.mp3") |
|
|
|
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] |
|
|
|
text = pipe("audio.mp3")["text"] |
|
|
|
return html_embed_str, text |
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
mf_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.inputs.Audio(source="microphone", type="filepath", optional=True), |
|
gr.inputs.Audio(source="upload", type="filepath", optional=True), |
|
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), |
|
], |
|
outputs="text", |
|
layout="horizontal", |
|
theme="huggingface", |
|
title="Whisper Demo: Transcribe Audio", |
|
description=( |
|
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned" |
|
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" |
|
" of arbitrary length." |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
yt_transcribe = gr.Interface( |
|
fn=yt_transcribe, |
|
inputs=[ |
|
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), |
|
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe") |
|
], |
|
outputs=["html", "text"], |
|
layout="horizontal", |
|
theme="huggingface", |
|
title="Whisper Demo: Transcribe YouTube", |
|
description=( |
|
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint:" |
|
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of" |
|
" arbitrary length." |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) |
|
|
|
demo.launch(enable_queue=True) |
|
|
|
|