|
import logging |
|
from os import PathLike |
|
from typing import BinaryIO, List, Optional, Set, Union |
|
|
|
from .cd import ( |
|
coherence_ratio, |
|
encoding_languages, |
|
mb_encoding_languages, |
|
merge_coherence_ratios, |
|
) |
|
from .constant import IANA_SUPPORTED, TOO_BIG_SEQUENCE, TOO_SMALL_SEQUENCE, TRACE |
|
from .md import mess_ratio |
|
from .models import CharsetMatch, CharsetMatches |
|
from .utils import ( |
|
any_specified_encoding, |
|
cut_sequence_chunks, |
|
iana_name, |
|
identify_sig_or_bom, |
|
is_cp_similar, |
|
is_multi_byte_encoding, |
|
should_strip_sig_or_bom, |
|
) |
|
|
|
|
|
|
|
logger = logging.getLogger("charset_normalizer") |
|
explain_handler = logging.StreamHandler() |
|
explain_handler.setFormatter( |
|
logging.Formatter("%(asctime)s | %(levelname)s | %(message)s") |
|
) |
|
|
|
|
|
def from_bytes( |
|
sequences: Union[bytes, bytearray], |
|
steps: int = 5, |
|
chunk_size: int = 512, |
|
threshold: float = 0.2, |
|
cp_isolation: Optional[List[str]] = None, |
|
cp_exclusion: Optional[List[str]] = None, |
|
preemptive_behaviour: bool = True, |
|
explain: bool = False, |
|
language_threshold: float = 0.1, |
|
enable_fallback: bool = True, |
|
) -> CharsetMatches: |
|
""" |
|
Given a raw bytes sequence, return the best possibles charset usable to render str objects. |
|
If there is no results, it is a strong indicator that the source is binary/not text. |
|
By default, the process will extract 5 blocks of 512o each to assess the mess and coherence of a given sequence. |
|
And will give up a particular code page after 20% of measured mess. Those criteria are customizable at will. |
|
|
|
The preemptive behavior DOES NOT replace the traditional detection workflow, it prioritize a particular code page |
|
but never take it for granted. Can improve the performance. |
|
|
|
You may want to focus your attention to some code page or/and not others, use cp_isolation and cp_exclusion for that |
|
purpose. |
|
|
|
This function will strip the SIG in the payload/sequence every time except on UTF-16, UTF-32. |
|
By default the library does not setup any handler other than the NullHandler, if you choose to set the 'explain' |
|
toggle to True it will alter the logger configuration to add a StreamHandler that is suitable for debugging. |
|
Custom logging format and handler can be set manually. |
|
""" |
|
|
|
if not isinstance(sequences, (bytearray, bytes)): |
|
raise TypeError( |
|
"Expected object of type bytes or bytearray, got: {0}".format( |
|
type(sequences) |
|
) |
|
) |
|
|
|
if explain: |
|
previous_logger_level: int = logger.level |
|
logger.addHandler(explain_handler) |
|
logger.setLevel(TRACE) |
|
|
|
length: int = len(sequences) |
|
|
|
if length == 0: |
|
logger.debug("Encoding detection on empty bytes, assuming utf_8 intention.") |
|
if explain: |
|
logger.removeHandler(explain_handler) |
|
logger.setLevel(previous_logger_level or logging.WARNING) |
|
return CharsetMatches([CharsetMatch(sequences, "utf_8", 0.0, False, [], "")]) |
|
|
|
if cp_isolation is not None: |
|
logger.log( |
|
TRACE, |
|
"cp_isolation is set. use this flag for debugging purpose. " |
|
"limited list of encoding allowed : %s.", |
|
", ".join(cp_isolation), |
|
) |
|
cp_isolation = [iana_name(cp, False) for cp in cp_isolation] |
|
else: |
|
cp_isolation = [] |
|
|
|
if cp_exclusion is not None: |
|
logger.log( |
|
TRACE, |
|
"cp_exclusion is set. use this flag for debugging purpose. " |
|
"limited list of encoding excluded : %s.", |
|
", ".join(cp_exclusion), |
|
) |
|
cp_exclusion = [iana_name(cp, False) for cp in cp_exclusion] |
|
else: |
|
cp_exclusion = [] |
|
|
|
if length <= (chunk_size * steps): |
|
logger.log( |
|
TRACE, |
|
"override steps (%i) and chunk_size (%i) as content does not fit (%i byte(s) given) parameters.", |
|
steps, |
|
chunk_size, |
|
length, |
|
) |
|
steps = 1 |
|
chunk_size = length |
|
|
|
if steps > 1 and length / steps < chunk_size: |
|
chunk_size = int(length / steps) |
|
|
|
is_too_small_sequence: bool = len(sequences) < TOO_SMALL_SEQUENCE |
|
is_too_large_sequence: bool = len(sequences) >= TOO_BIG_SEQUENCE |
|
|
|
if is_too_small_sequence: |
|
logger.log( |
|
TRACE, |
|
"Trying to detect encoding from a tiny portion of ({}) byte(s).".format( |
|
length |
|
), |
|
) |
|
elif is_too_large_sequence: |
|
logger.log( |
|
TRACE, |
|
"Using lazy str decoding because the payload is quite large, ({}) byte(s).".format( |
|
length |
|
), |
|
) |
|
|
|
prioritized_encodings: List[str] = [] |
|
|
|
specified_encoding: Optional[str] = ( |
|
any_specified_encoding(sequences) if preemptive_behaviour else None |
|
) |
|
|
|
if specified_encoding is not None: |
|
prioritized_encodings.append(specified_encoding) |
|
logger.log( |
|
TRACE, |
|
"Detected declarative mark in sequence. Priority +1 given for %s.", |
|
specified_encoding, |
|
) |
|
|
|
tested: Set[str] = set() |
|
tested_but_hard_failure: List[str] = [] |
|
tested_but_soft_failure: List[str] = [] |
|
|
|
fallback_ascii: Optional[CharsetMatch] = None |
|
fallback_u8: Optional[CharsetMatch] = None |
|
fallback_specified: Optional[CharsetMatch] = None |
|
|
|
results: CharsetMatches = CharsetMatches() |
|
|
|
sig_encoding, sig_payload = identify_sig_or_bom(sequences) |
|
|
|
if sig_encoding is not None: |
|
prioritized_encodings.append(sig_encoding) |
|
logger.log( |
|
TRACE, |
|
"Detected a SIG or BOM mark on first %i byte(s). Priority +1 given for %s.", |
|
len(sig_payload), |
|
sig_encoding, |
|
) |
|
|
|
prioritized_encodings.append("ascii") |
|
|
|
if "utf_8" not in prioritized_encodings: |
|
prioritized_encodings.append("utf_8") |
|
|
|
for encoding_iana in prioritized_encodings + IANA_SUPPORTED: |
|
if cp_isolation and encoding_iana not in cp_isolation: |
|
continue |
|
|
|
if cp_exclusion and encoding_iana in cp_exclusion: |
|
continue |
|
|
|
if encoding_iana in tested: |
|
continue |
|
|
|
tested.add(encoding_iana) |
|
|
|
decoded_payload: Optional[str] = None |
|
bom_or_sig_available: bool = sig_encoding == encoding_iana |
|
strip_sig_or_bom: bool = bom_or_sig_available and should_strip_sig_or_bom( |
|
encoding_iana |
|
) |
|
|
|
if encoding_iana in {"utf_16", "utf_32"} and not bom_or_sig_available: |
|
logger.log( |
|
TRACE, |
|
"Encoding %s won't be tested as-is because it require a BOM. Will try some sub-encoder LE/BE.", |
|
encoding_iana, |
|
) |
|
continue |
|
if encoding_iana in {"utf_7"} and not bom_or_sig_available: |
|
logger.log( |
|
TRACE, |
|
"Encoding %s won't be tested as-is because detection is unreliable without BOM/SIG.", |
|
encoding_iana, |
|
) |
|
continue |
|
|
|
try: |
|
is_multi_byte_decoder: bool = is_multi_byte_encoding(encoding_iana) |
|
except (ModuleNotFoundError, ImportError): |
|
logger.log( |
|
TRACE, |
|
"Encoding %s does not provide an IncrementalDecoder", |
|
encoding_iana, |
|
) |
|
continue |
|
|
|
try: |
|
if is_too_large_sequence and is_multi_byte_decoder is False: |
|
str( |
|
sequences[: int(50e4)] |
|
if strip_sig_or_bom is False |
|
else sequences[len(sig_payload) : int(50e4)], |
|
encoding=encoding_iana, |
|
) |
|
else: |
|
decoded_payload = str( |
|
sequences |
|
if strip_sig_or_bom is False |
|
else sequences[len(sig_payload) :], |
|
encoding=encoding_iana, |
|
) |
|
except (UnicodeDecodeError, LookupError) as e: |
|
if not isinstance(e, LookupError): |
|
logger.log( |
|
TRACE, |
|
"Code page %s does not fit given bytes sequence at ALL. %s", |
|
encoding_iana, |
|
str(e), |
|
) |
|
tested_but_hard_failure.append(encoding_iana) |
|
continue |
|
|
|
similar_soft_failure_test: bool = False |
|
|
|
for encoding_soft_failed in tested_but_soft_failure: |
|
if is_cp_similar(encoding_iana, encoding_soft_failed): |
|
similar_soft_failure_test = True |
|
break |
|
|
|
if similar_soft_failure_test: |
|
logger.log( |
|
TRACE, |
|
"%s is deemed too similar to code page %s and was consider unsuited already. Continuing!", |
|
encoding_iana, |
|
encoding_soft_failed, |
|
) |
|
continue |
|
|
|
r_ = range( |
|
0 if not bom_or_sig_available else len(sig_payload), |
|
length, |
|
int(length / steps), |
|
) |
|
|
|
multi_byte_bonus: bool = ( |
|
is_multi_byte_decoder |
|
and decoded_payload is not None |
|
and len(decoded_payload) < length |
|
) |
|
|
|
if multi_byte_bonus: |
|
logger.log( |
|
TRACE, |
|
"Code page %s is a multi byte encoding table and it appear that at least one character " |
|
"was encoded using n-bytes.", |
|
encoding_iana, |
|
) |
|
|
|
max_chunk_gave_up: int = int(len(r_) / 4) |
|
|
|
max_chunk_gave_up = max(max_chunk_gave_up, 2) |
|
early_stop_count: int = 0 |
|
lazy_str_hard_failure = False |
|
|
|
md_chunks: List[str] = [] |
|
md_ratios = [] |
|
|
|
try: |
|
for chunk in cut_sequence_chunks( |
|
sequences, |
|
encoding_iana, |
|
r_, |
|
chunk_size, |
|
bom_or_sig_available, |
|
strip_sig_or_bom, |
|
sig_payload, |
|
is_multi_byte_decoder, |
|
decoded_payload, |
|
): |
|
md_chunks.append(chunk) |
|
|
|
md_ratios.append( |
|
mess_ratio( |
|
chunk, |
|
threshold, |
|
explain is True and 1 <= len(cp_isolation) <= 2, |
|
) |
|
) |
|
|
|
if md_ratios[-1] >= threshold: |
|
early_stop_count += 1 |
|
|
|
if (early_stop_count >= max_chunk_gave_up) or ( |
|
bom_or_sig_available and strip_sig_or_bom is False |
|
): |
|
break |
|
except ( |
|
UnicodeDecodeError |
|
) as e: |
|
logger.log( |
|
TRACE, |
|
"LazyStr Loading: After MD chunk decode, code page %s does not fit given bytes sequence at ALL. %s", |
|
encoding_iana, |
|
str(e), |
|
) |
|
early_stop_count = max_chunk_gave_up |
|
lazy_str_hard_failure = True |
|
|
|
|
|
|
|
if ( |
|
not lazy_str_hard_failure |
|
and is_too_large_sequence |
|
and not is_multi_byte_decoder |
|
): |
|
try: |
|
sequences[int(50e3) :].decode(encoding_iana, errors="strict") |
|
except UnicodeDecodeError as e: |
|
logger.log( |
|
TRACE, |
|
"LazyStr Loading: After final lookup, code page %s does not fit given bytes sequence at ALL. %s", |
|
encoding_iana, |
|
str(e), |
|
) |
|
tested_but_hard_failure.append(encoding_iana) |
|
continue |
|
|
|
mean_mess_ratio: float = sum(md_ratios) / len(md_ratios) if md_ratios else 0.0 |
|
if mean_mess_ratio >= threshold or early_stop_count >= max_chunk_gave_up: |
|
tested_but_soft_failure.append(encoding_iana) |
|
logger.log( |
|
TRACE, |
|
"%s was excluded because of initial chaos probing. Gave up %i time(s). " |
|
"Computed mean chaos is %f %%.", |
|
encoding_iana, |
|
early_stop_count, |
|
round(mean_mess_ratio * 100, ndigits=3), |
|
) |
|
|
|
if ( |
|
enable_fallback |
|
and encoding_iana in ["ascii", "utf_8", specified_encoding] |
|
and not lazy_str_hard_failure |
|
): |
|
fallback_entry = CharsetMatch( |
|
sequences, encoding_iana, threshold, False, [], decoded_payload |
|
) |
|
if encoding_iana == specified_encoding: |
|
fallback_specified = fallback_entry |
|
elif encoding_iana == "ascii": |
|
fallback_ascii = fallback_entry |
|
else: |
|
fallback_u8 = fallback_entry |
|
continue |
|
|
|
logger.log( |
|
TRACE, |
|
"%s passed initial chaos probing. Mean measured chaos is %f %%", |
|
encoding_iana, |
|
round(mean_mess_ratio * 100, ndigits=3), |
|
) |
|
|
|
if not is_multi_byte_decoder: |
|
target_languages: List[str] = encoding_languages(encoding_iana) |
|
else: |
|
target_languages = mb_encoding_languages(encoding_iana) |
|
|
|
if target_languages: |
|
logger.log( |
|
TRACE, |
|
"{} should target any language(s) of {}".format( |
|
encoding_iana, str(target_languages) |
|
), |
|
) |
|
|
|
cd_ratios = [] |
|
|
|
|
|
|
|
if encoding_iana != "ascii": |
|
for chunk in md_chunks: |
|
chunk_languages = coherence_ratio( |
|
chunk, |
|
language_threshold, |
|
",".join(target_languages) if target_languages else None, |
|
) |
|
|
|
cd_ratios.append(chunk_languages) |
|
|
|
cd_ratios_merged = merge_coherence_ratios(cd_ratios) |
|
|
|
if cd_ratios_merged: |
|
logger.log( |
|
TRACE, |
|
"We detected language {} using {}".format( |
|
cd_ratios_merged, encoding_iana |
|
), |
|
) |
|
|
|
results.append( |
|
CharsetMatch( |
|
sequences, |
|
encoding_iana, |
|
mean_mess_ratio, |
|
bom_or_sig_available, |
|
cd_ratios_merged, |
|
decoded_payload, |
|
) |
|
) |
|
|
|
if ( |
|
encoding_iana in [specified_encoding, "ascii", "utf_8"] |
|
and mean_mess_ratio < 0.1 |
|
): |
|
logger.debug( |
|
"Encoding detection: %s is most likely the one.", encoding_iana |
|
) |
|
if explain: |
|
logger.removeHandler(explain_handler) |
|
logger.setLevel(previous_logger_level) |
|
return CharsetMatches([results[encoding_iana]]) |
|
|
|
if encoding_iana == sig_encoding: |
|
logger.debug( |
|
"Encoding detection: %s is most likely the one as we detected a BOM or SIG within " |
|
"the beginning of the sequence.", |
|
encoding_iana, |
|
) |
|
if explain: |
|
logger.removeHandler(explain_handler) |
|
logger.setLevel(previous_logger_level) |
|
return CharsetMatches([results[encoding_iana]]) |
|
|
|
if len(results) == 0: |
|
if fallback_u8 or fallback_ascii or fallback_specified: |
|
logger.log( |
|
TRACE, |
|
"Nothing got out of the detection process. Using ASCII/UTF-8/Specified fallback.", |
|
) |
|
|
|
if fallback_specified: |
|
logger.debug( |
|
"Encoding detection: %s will be used as a fallback match", |
|
fallback_specified.encoding, |
|
) |
|
results.append(fallback_specified) |
|
elif ( |
|
(fallback_u8 and fallback_ascii is None) |
|
or ( |
|
fallback_u8 |
|
and fallback_ascii |
|
and fallback_u8.fingerprint != fallback_ascii.fingerprint |
|
) |
|
or (fallback_u8 is not None) |
|
): |
|
logger.debug("Encoding detection: utf_8 will be used as a fallback match") |
|
results.append(fallback_u8) |
|
elif fallback_ascii: |
|
logger.debug("Encoding detection: ascii will be used as a fallback match") |
|
results.append(fallback_ascii) |
|
|
|
if results: |
|
logger.debug( |
|
"Encoding detection: Found %s as plausible (best-candidate) for content. With %i alternatives.", |
|
results.best().encoding, |
|
len(results) - 1, |
|
) |
|
else: |
|
logger.debug("Encoding detection: Unable to determine any suitable charset.") |
|
|
|
if explain: |
|
logger.removeHandler(explain_handler) |
|
logger.setLevel(previous_logger_level) |
|
|
|
return results |
|
|
|
|
|
def from_fp( |
|
fp: BinaryIO, |
|
steps: int = 5, |
|
chunk_size: int = 512, |
|
threshold: float = 0.20, |
|
cp_isolation: Optional[List[str]] = None, |
|
cp_exclusion: Optional[List[str]] = None, |
|
preemptive_behaviour: bool = True, |
|
explain: bool = False, |
|
language_threshold: float = 0.1, |
|
enable_fallback: bool = True, |
|
) -> CharsetMatches: |
|
""" |
|
Same thing than the function from_bytes but using a file pointer that is already ready. |
|
Will not close the file pointer. |
|
""" |
|
return from_bytes( |
|
fp.read(), |
|
steps, |
|
chunk_size, |
|
threshold, |
|
cp_isolation, |
|
cp_exclusion, |
|
preemptive_behaviour, |
|
explain, |
|
language_threshold, |
|
enable_fallback, |
|
) |
|
|
|
|
|
def from_path( |
|
path: Union[str, bytes, PathLike], |
|
steps: int = 5, |
|
chunk_size: int = 512, |
|
threshold: float = 0.20, |
|
cp_isolation: Optional[List[str]] = None, |
|
cp_exclusion: Optional[List[str]] = None, |
|
preemptive_behaviour: bool = True, |
|
explain: bool = False, |
|
language_threshold: float = 0.1, |
|
enable_fallback: bool = True, |
|
) -> CharsetMatches: |
|
""" |
|
Same thing than the function from_bytes but with one extra step. Opening and reading given file path in binary mode. |
|
Can raise IOError. |
|
""" |
|
with open(path, "rb") as fp: |
|
return from_fp( |
|
fp, |
|
steps, |
|
chunk_size, |
|
threshold, |
|
cp_isolation, |
|
cp_exclusion, |
|
preemptive_behaviour, |
|
explain, |
|
language_threshold, |
|
enable_fallback, |
|
) |
|
|
|
|
|
def is_binary( |
|
fp_or_path_or_payload: Union[PathLike, str, BinaryIO, bytes], |
|
steps: int = 5, |
|
chunk_size: int = 512, |
|
threshold: float = 0.20, |
|
cp_isolation: Optional[List[str]] = None, |
|
cp_exclusion: Optional[List[str]] = None, |
|
preemptive_behaviour: bool = True, |
|
explain: bool = False, |
|
language_threshold: float = 0.1, |
|
enable_fallback: bool = False, |
|
) -> bool: |
|
""" |
|
Detect if the given input (file, bytes, or path) points to a binary file. aka. not a string. |
|
Based on the same main heuristic algorithms and default kwargs at the sole exception that fallbacks match |
|
are disabled to be stricter around ASCII-compatible but unlikely to be a string. |
|
""" |
|
if isinstance(fp_or_path_or_payload, (str, PathLike)): |
|
guesses = from_path( |
|
fp_or_path_or_payload, |
|
steps=steps, |
|
chunk_size=chunk_size, |
|
threshold=threshold, |
|
cp_isolation=cp_isolation, |
|
cp_exclusion=cp_exclusion, |
|
preemptive_behaviour=preemptive_behaviour, |
|
explain=explain, |
|
language_threshold=language_threshold, |
|
enable_fallback=enable_fallback, |
|
) |
|
elif isinstance( |
|
fp_or_path_or_payload, |
|
( |
|
bytes, |
|
bytearray, |
|
), |
|
): |
|
guesses = from_bytes( |
|
fp_or_path_or_payload, |
|
steps=steps, |
|
chunk_size=chunk_size, |
|
threshold=threshold, |
|
cp_isolation=cp_isolation, |
|
cp_exclusion=cp_exclusion, |
|
preemptive_behaviour=preemptive_behaviour, |
|
explain=explain, |
|
language_threshold=language_threshold, |
|
enable_fallback=enable_fallback, |
|
) |
|
else: |
|
guesses = from_fp( |
|
fp_or_path_or_payload, |
|
steps=steps, |
|
chunk_size=chunk_size, |
|
threshold=threshold, |
|
cp_isolation=cp_isolation, |
|
cp_exclusion=cp_exclusion, |
|
preemptive_behaviour=preemptive_behaviour, |
|
explain=explain, |
|
language_threshold=language_threshold, |
|
enable_fallback=enable_fallback, |
|
) |
|
|
|
return not guesses |
|
|