VPTQ-demo / app.py
OpenSourceRonin's picture
f
44b2436
raw
history blame
3.36 kB
import spaces
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
from vptq.app_utils import get_chat_loop_generator
model_list=["VPTQ-community/Meta-Llama-3.1-8B-Instruct-v12-k65536-4096-woft",
"VPTQ-community/Meta-Llama-3.1-70B-Instruct-v8-k32768-0-woft",
"VPTQ-community/Qwen2.5-7B-Instruct-v8-k256-256-woft",
"VPTQ-community/Qwen2.5-14B-Instruct-v8-k256-256-woft",
"VPTQ-community/Qwen2.5-32B-Instruct-v16-k65536-65536-woft",
"VPTQ-community/Qwen2.5-72B-Instruct-v8-k65536-0-woft",
]
current_model_g = model_list[0]
chat_completion = get_chat_loop_generator(current_model_g)
@spaces.GPU
def update_title_and_chatmodel(model):
model = str(model)
global chat_completion
global current_model_g
if model != current_model_g:
current_model_g = model
chat_completion = get_chat_loop_generator(current_model_g)
return model
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message
response += token
yield response
css = """
h1 {
text-align: center;
display: block;
}
"""
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
chatbot = gr.Chatbot(label="Gradio ChatInterface")
with gr.Blocks() as demo:
with gr.Column(scale=1):
title_output = gr.Markdown("Please select a model to run")
chat_demo = gr.ChatInterface(
respond,
#chatbot=chatbot,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
fill_height=False,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
model_select = gr.Dropdown(
choices=model_list,
label="Models",
value=model_list[0],
)
model_select.change(update_title_and_chatmodel, inputs=[model_select], outputs=title_output)
if __name__ == "__main__":
demo.launch()