anonymous9a7b
1
f032e68
import torch
from einops import rearrange
from torch import nn
class Pretransform(nn.Module):
def __init__(self, enable_grad, io_channels, is_discrete):
super().__init__()
self.is_discrete = is_discrete
self.io_channels = io_channels
self.encoded_channels = None
self.downsampling_ratio = None
self.enable_grad = enable_grad
def encode(self, x):
raise NotImplementedError
def decode(self, z):
raise NotImplementedError
def tokenize(self, x):
raise NotImplementedError
def decode_tokens(self, tokens):
raise NotImplementedError
class AutoencoderPretransform(Pretransform):
def __init__(self, model, scale=1.0, model_half=False, iterate_batch=False, chunked=False):
super().__init__(enable_grad=False, io_channels=model.io_channels, is_discrete=model.bottleneck is not None and model.bottleneck.is_discrete)
self.model = model
self.model.requires_grad_(False).eval()
self.scale=scale
self.downsampling_ratio = model.downsampling_ratio
self.io_channels = model.io_channels
self.sample_rate = model.sample_rate
self.model_half = model_half
self.iterate_batch = iterate_batch
self.encoded_channels = model.latent_dim
self.chunked = chunked
self.num_quantizers = model.bottleneck.num_quantizers if model.bottleneck is not None and model.bottleneck.is_discrete else None
self.codebook_size = model.bottleneck.codebook_size if model.bottleneck is not None and model.bottleneck.is_discrete else None
if self.model_half:
self.model.half()
def encode(self, x, **kwargs):
if self.model_half:
x = x.half()
self.model.to(torch.float16)
encoded = self.model.encode_audio(x, chunked=self.chunked, iterate_batch=self.iterate_batch, **kwargs)
if self.model_half:
encoded = encoded.float()
return encoded / self.scale
def decode(self, z, **kwargs):
z = z * self.scale
if self.model_half:
z = z.half()
self.model.to(torch.float16)
decoded = self.model.decode_audio(z, chunked=self.chunked, iterate_batch=self.iterate_batch, **kwargs)
if self.model_half:
decoded = decoded.float()
return decoded
def tokenize(self, x, **kwargs):
assert self.model.is_discrete, "Cannot tokenize with a continuous model"
_, info = self.model.encode(x, return_info = True, **kwargs)
return info[self.model.bottleneck.tokens_id]
def decode_tokens(self, tokens, **kwargs):
assert self.model.is_discrete, "Cannot decode tokens with a continuous model"
return self.model.decode_tokens(tokens, **kwargs)
def load_state_dict(self, state_dict, strict=True):
self.model.load_state_dict(state_dict, strict=strict)
class WaveletPretransform(Pretransform):
def __init__(self, channels, levels, wavelet):
super().__init__(enable_grad=False, io_channels=channels, is_discrete=False)
from .wavelets import WaveletEncode1d, WaveletDecode1d
self.encoder = WaveletEncode1d(channels, levels, wavelet)
self.decoder = WaveletDecode1d(channels, levels, wavelet)
self.downsampling_ratio = 2 ** levels
self.io_channels = channels
self.encoded_channels = channels * self.downsampling_ratio
def encode(self, x):
return self.encoder(x)
def decode(self, z):
return self.decoder(z)
class PQMFPretransform(Pretransform):
def __init__(self, attenuation=100, num_bands=16):
# TODO: Fix PQMF to take in in-channels
super().__init__(enable_grad=False, io_channels=1, is_discrete=False)
from .pqmf import PQMF
self.pqmf = PQMF(attenuation, num_bands)
def encode(self, x):
# x is (Batch x Channels x Time)
x = self.pqmf.forward(x)
# pqmf.forward returns (Batch x Channels x Bands x Time)
# but Pretransform needs Batch x Channels x Time
# so concatenate channels and bands into one axis
return rearrange(x, "b c n t -> b (c n) t")
def decode(self, x):
# x is (Batch x (Channels Bands) x Time), convert back to (Batch x Channels x Bands x Time)
x = rearrange(x, "b (c n) t -> b c n t", n=self.pqmf.num_bands)
# returns (Batch x Channels x Time)
return self.pqmf.inverse(x)
class PretrainedDACPretransform(Pretransform):
def __init__(self, model_type="44khz", model_bitrate="8kbps", scale=1.0, quantize_on_decode: bool = True, chunked=True):
super().__init__(enable_grad=False, io_channels=1, is_discrete=True)
import dac
model_path = dac.utils.download(model_type=model_type, model_bitrate=model_bitrate)
self.model = dac.DAC.load(model_path)
self.quantize_on_decode = quantize_on_decode
if model_type == "44khz":
self.downsampling_ratio = 512
else:
self.downsampling_ratio = 320
self.io_channels = 1
self.scale = scale
self.chunked = chunked
self.encoded_channels = self.model.latent_dim
self.num_quantizers = self.model.n_codebooks
self.codebook_size = self.model.codebook_size
def encode(self, x):
latents = self.model.encoder(x)
if self.quantize_on_decode:
output = latents
else:
z, _, _, _, _ = self.model.quantizer(latents, n_quantizers=self.model.n_codebooks)
output = z
if self.scale != 1.0:
output = output / self.scale
return output
def decode(self, z):
if self.scale != 1.0:
z = z * self.scale
if self.quantize_on_decode:
z, _, _, _, _ = self.model.quantizer(z, n_quantizers=self.model.n_codebooks)
return self.model.decode(z)
def tokenize(self, x):
return self.model.encode(x)[1]
def decode_tokens(self, tokens):
latents = self.model.quantizer.from_codes(tokens)
return self.model.decode(latents)
class AudiocraftCompressionPretransform(Pretransform):
def __init__(self, model_type="facebook/encodec_32khz", scale=1.0, quantize_on_decode: bool = True):
super().__init__(enable_grad=False, io_channels=1, is_discrete=True)
try:
from audiocraft.models import CompressionModel
except ImportError:
raise ImportError("Audiocraft is not installed. Please install audiocraft to use Audiocraft models.")
self.model = CompressionModel.get_pretrained(model_type)
self.quantize_on_decode = quantize_on_decode
self.downsampling_ratio = round(self.model.sample_rate / self.model.frame_rate)
self.sample_rate = self.model.sample_rate
self.io_channels = self.model.channels
self.scale = scale
#self.encoded_channels = self.model.latent_dim
self.num_quantizers = self.model.num_codebooks
self.codebook_size = self.model.cardinality
self.model.to(torch.float16).eval().requires_grad_(False)
def encode(self, x):
assert False, "Audiocraft compression models do not support continuous encoding"
# latents = self.model.encoder(x)
# if self.quantize_on_decode:
# output = latents
# else:
# z, _, _, _, _ = self.model.quantizer(latents, n_quantizers=self.model.n_codebooks)
# output = z
# if self.scale != 1.0:
# output = output / self.scale
# return output
def decode(self, z):
assert False, "Audiocraft compression models do not support continuous decoding"
# if self.scale != 1.0:
# z = z * self.scale
# if self.quantize_on_decode:
# z, _, _, _, _ = self.model.quantizer(z, n_quantizers=self.model.n_codebooks)
# return self.model.decode(z)
def tokenize(self, x):
with torch.cuda.amp.autocast(enabled=False):
return self.model.encode(x.to(torch.float16))[0]
def decode_tokens(self, tokens):
with torch.cuda.amp.autocast(enabled=False):
return self.model.decode(tokens)