|
import torch |
|
import math |
|
import numpy as np |
|
|
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torchaudio import transforms as T |
|
from alias_free_torch import Activation1d |
|
from .nn.layers import WNConv1d, WNConvTranspose1d |
|
from typing import Literal, Dict, Any |
|
|
|
|
|
from .utils import prepare_audio |
|
from .blocks import SnakeBeta |
|
from .bottleneck import Bottleneck, DiscreteBottleneck |
|
from .factory import create_pretransform_from_config, create_bottleneck_from_config |
|
from .pretransforms import Pretransform |
|
|
|
def checkpoint(function, *args, **kwargs): |
|
kwargs.setdefault("use_reentrant", False) |
|
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs) |
|
|
|
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module: |
|
if activation == "elu": |
|
act = nn.ELU() |
|
elif activation == "snake": |
|
act = SnakeBeta(channels) |
|
elif activation == "none": |
|
act = nn.Identity() |
|
else: |
|
raise ValueError(f"Unknown activation {activation}") |
|
|
|
if antialias: |
|
act = Activation1d(act) |
|
|
|
return act |
|
|
|
class ResidualUnit(nn.Module): |
|
def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False): |
|
super().__init__() |
|
|
|
self.dilation = dilation |
|
|
|
padding = (dilation * (7-1)) // 2 |
|
|
|
self.layers = nn.Sequential( |
|
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels), |
|
WNConv1d(in_channels=in_channels, out_channels=out_channels, |
|
kernel_size=7, dilation=dilation, padding=padding), |
|
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels), |
|
WNConv1d(in_channels=out_channels, out_channels=out_channels, |
|
kernel_size=1) |
|
) |
|
|
|
def forward(self, x): |
|
res = x |
|
|
|
|
|
x = self.layers(x) |
|
|
|
return x + res |
|
|
|
class EncoderBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False): |
|
super().__init__() |
|
|
|
self.layers = nn.Sequential( |
|
ResidualUnit(in_channels=in_channels, |
|
out_channels=in_channels, dilation=1, use_snake=use_snake), |
|
ResidualUnit(in_channels=in_channels, |
|
out_channels=in_channels, dilation=3, use_snake=use_snake), |
|
ResidualUnit(in_channels=in_channels, |
|
out_channels=in_channels, dilation=9, use_snake=use_snake), |
|
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels), |
|
WNConv1d(in_channels=in_channels, out_channels=out_channels, |
|
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)), |
|
) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
class DecoderBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False): |
|
super().__init__() |
|
|
|
if use_nearest_upsample: |
|
upsample_layer = nn.Sequential( |
|
nn.Upsample(scale_factor=stride, mode="nearest"), |
|
WNConv1d(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=2*stride, |
|
stride=1, |
|
bias=False, |
|
padding='same') |
|
) |
|
else: |
|
upsample_layer = WNConvTranspose1d(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)) |
|
|
|
self.layers = nn.Sequential( |
|
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels), |
|
upsample_layer, |
|
ResidualUnit(in_channels=out_channels, out_channels=out_channels, |
|
dilation=1, use_snake=use_snake), |
|
ResidualUnit(in_channels=out_channels, out_channels=out_channels, |
|
dilation=3, use_snake=use_snake), |
|
ResidualUnit(in_channels=out_channels, out_channels=out_channels, |
|
dilation=9, use_snake=use_snake), |
|
) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
class OobleckEncoder(nn.Module): |
|
def __init__(self, |
|
in_channels=2, |
|
channels=128, |
|
latent_dim=32, |
|
c_mults = [1, 2, 4, 8], |
|
strides = [2, 4, 8, 8], |
|
use_snake=False, |
|
antialias_activation=False |
|
): |
|
super().__init__() |
|
|
|
c_mults = [1] + c_mults |
|
|
|
self.depth = len(c_mults) |
|
|
|
layers = [ |
|
WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3) |
|
] |
|
|
|
for i in range(self.depth-1): |
|
layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)] |
|
|
|
layers += [ |
|
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels), |
|
WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1) |
|
] |
|
|
|
self.layers = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
|
|
class OobleckDecoder(nn.Module): |
|
def __init__(self, |
|
out_channels=2, |
|
channels=128, |
|
latent_dim=32, |
|
c_mults = [1, 2, 4, 8], |
|
strides = [2, 4, 8, 8], |
|
use_snake=False, |
|
antialias_activation=False, |
|
use_nearest_upsample=False, |
|
final_tanh=True): |
|
super().__init__() |
|
|
|
c_mults = [1] + c_mults |
|
|
|
self.depth = len(c_mults) |
|
|
|
layers = [ |
|
WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3), |
|
] |
|
|
|
for i in range(self.depth-1, 0, -1): |
|
layers += [DecoderBlock( |
|
in_channels=c_mults[i]*channels, |
|
out_channels=c_mults[i-1]*channels, |
|
stride=strides[i-1], |
|
use_snake=use_snake, |
|
antialias_activation=antialias_activation, |
|
use_nearest_upsample=use_nearest_upsample |
|
) |
|
] |
|
|
|
layers += [ |
|
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels), |
|
WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False), |
|
nn.Tanh() if final_tanh else nn.Identity() |
|
] |
|
|
|
self.layers = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
|
|
class DACEncoderWrapper(nn.Module): |
|
def __init__(self, in_channels=1, **kwargs): |
|
super().__init__() |
|
|
|
from dac.model.dac import Encoder as DACEncoder |
|
|
|
latent_dim = kwargs.pop("latent_dim", None) |
|
|
|
encoder_out_dim = kwargs["d_model"] * (2 ** len(kwargs["strides"])) |
|
self.encoder = DACEncoder(d_latent=encoder_out_dim, **kwargs) |
|
self.latent_dim = latent_dim |
|
|
|
|
|
self.proj_out = nn.Conv1d(self.encoder.enc_dim, latent_dim, kernel_size=1) if latent_dim is not None else nn.Identity() |
|
|
|
if in_channels != 1: |
|
self.encoder.block[0] = WNConv1d(in_channels, kwargs.get("d_model", 64), kernel_size=7, padding=3) |
|
|
|
def forward(self, x): |
|
x = self.encoder(x) |
|
x = self.proj_out(x) |
|
return x |
|
|
|
class DACDecoderWrapper(nn.Module): |
|
def __init__(self, latent_dim, out_channels=1, **kwargs): |
|
super().__init__() |
|
|
|
from dac.model.dac import Decoder as DACDecoder |
|
|
|
self.decoder = DACDecoder(**kwargs, input_channel = latent_dim, d_out=out_channels) |
|
|
|
self.latent_dim = latent_dim |
|
|
|
def forward(self, x): |
|
return self.decoder(x) |
|
|
|
class AudioAutoencoder(nn.Module): |
|
def __init__( |
|
self, |
|
encoder, |
|
decoder, |
|
latent_dim, |
|
downsampling_ratio, |
|
sample_rate, |
|
io_channels=2, |
|
bottleneck: Bottleneck = None, |
|
pretransform: Pretransform = None, |
|
in_channels = None, |
|
out_channels = None, |
|
soft_clip = False |
|
): |
|
super().__init__() |
|
|
|
self.downsampling_ratio = downsampling_ratio |
|
self.sample_rate = sample_rate |
|
|
|
self.latent_dim = latent_dim |
|
self.io_channels = io_channels |
|
self.in_channels = io_channels |
|
self.out_channels = io_channels |
|
|
|
self.min_length = self.downsampling_ratio |
|
|
|
if in_channels is not None: |
|
self.in_channels = in_channels |
|
|
|
if out_channels is not None: |
|
self.out_channels = out_channels |
|
|
|
self.bottleneck = bottleneck |
|
|
|
self.encoder = encoder |
|
|
|
self.decoder = decoder |
|
|
|
self.pretransform = pretransform |
|
|
|
self.soft_clip = soft_clip |
|
|
|
self.is_discrete = self.bottleneck is not None and self.bottleneck.is_discrete |
|
|
|
def encode(self, audio, return_info=False, skip_pretransform=False, iterate_batch=False, **kwargs): |
|
|
|
info = {} |
|
|
|
if self.pretransform is not None and not skip_pretransform: |
|
if self.pretransform.enable_grad: |
|
if iterate_batch: |
|
audios = [] |
|
for i in range(audio.shape[0]): |
|
audios.append(self.pretransform.encode(audio[i:i+1])) |
|
audio = torch.cat(audios, dim=0) |
|
else: |
|
audio = self.pretransform.encode(audio) |
|
else: |
|
with torch.no_grad(): |
|
if iterate_batch: |
|
audios = [] |
|
for i in range(audio.shape[0]): |
|
audios.append(self.pretransform.encode(audio[i:i+1])) |
|
audio = torch.cat(audios, dim=0) |
|
else: |
|
audio = self.pretransform.encode(audio) |
|
|
|
if self.encoder is not None: |
|
if iterate_batch: |
|
latents = [] |
|
for i in range(audio.shape[0]): |
|
latents.append(self.encoder(audio[i:i+1])) |
|
latents = torch.cat(latents, dim=0) |
|
else: |
|
latents = self.encoder(audio) |
|
else: |
|
latents = audio |
|
|
|
if self.bottleneck is not None: |
|
|
|
latents, bottleneck_info = self.bottleneck.encode(latents, return_info=True, **kwargs) |
|
|
|
info.update(bottleneck_info) |
|
|
|
if return_info: |
|
return latents, info |
|
|
|
return latents |
|
|
|
def decode(self, latents, iterate_batch=False, **kwargs): |
|
|
|
if self.bottleneck is not None: |
|
if iterate_batch: |
|
decoded = [] |
|
for i in range(latents.shape[0]): |
|
decoded.append(self.bottleneck.decode(latents[i:i+1])) |
|
decoded = torch.cat(decoded, dim=0) |
|
else: |
|
latents = self.bottleneck.decode(latents) |
|
|
|
if iterate_batch: |
|
decoded = [] |
|
for i in range(latents.shape[0]): |
|
decoded.append(self.decoder(latents[i:i+1])) |
|
decoded = torch.cat(decoded, dim=0) |
|
else: |
|
decoded = self.decoder(latents, **kwargs) |
|
|
|
if self.pretransform is not None: |
|
if self.pretransform.enable_grad: |
|
if iterate_batch: |
|
decodeds = [] |
|
for i in range(decoded.shape[0]): |
|
decodeds.append(self.pretransform.decode(decoded[i:i+1])) |
|
decoded = torch.cat(decodeds, dim=0) |
|
else: |
|
decoded = self.pretransform.decode(decoded) |
|
else: |
|
with torch.no_grad(): |
|
if iterate_batch: |
|
decodeds = [] |
|
for i in range(latents.shape[0]): |
|
decodeds.append(self.pretransform.decode(decoded[i:i+1])) |
|
decoded = torch.cat(decodeds, dim=0) |
|
else: |
|
decoded = self.pretransform.decode(decoded) |
|
|
|
if self.soft_clip: |
|
decoded = torch.tanh(decoded) |
|
|
|
return decoded |
|
|
|
def decode_tokens(self, tokens, **kwargs): |
|
''' |
|
Decode discrete tokens to audio |
|
Only works with discrete autoencoders |
|
''' |
|
|
|
assert isinstance(self.bottleneck, DiscreteBottleneck), "decode_tokens only works with discrete autoencoders" |
|
|
|
latents = self.bottleneck.decode_tokens(tokens, **kwargs) |
|
|
|
return self.decode(latents, **kwargs) |
|
|
|
|
|
def preprocess_audio_for_encoder(self, audio, in_sr): |
|
''' |
|
Preprocess single audio tensor (Channels x Length) to be compatible with the encoder. |
|
If the model is mono, stereo audio will be converted to mono. |
|
Audio will be silence-padded to be a multiple of the model's downsampling ratio. |
|
Audio will be resampled to the model's sample rate. |
|
The output will have batch size 1 and be shape (1 x Channels x Length) |
|
''' |
|
return self.preprocess_audio_list_for_encoder([audio], [in_sr]) |
|
|
|
def preprocess_audio_list_for_encoder(self, audio_list, in_sr_list): |
|
''' |
|
Preprocess a [list] of audio (Channels x Length) into a batch tensor to be compatable with the encoder. |
|
The audio in that list can be of different lengths and channels. |
|
in_sr can be an integer or list. If it's an integer it will be assumed it is the input sample_rate for every audio. |
|
All audio will be resampled to the model's sample rate. |
|
Audio will be silence-padded to the longest length, and further padded to be a multiple of the model's downsampling ratio. |
|
If the model is mono, all audio will be converted to mono. |
|
The output will be a tensor of shape (Batch x Channels x Length) |
|
''' |
|
batch_size = len(audio_list) |
|
if isinstance(in_sr_list, int): |
|
in_sr_list = [in_sr_list]*batch_size |
|
assert len(in_sr_list) == batch_size, "list of sample rates must be the same length of audio_list" |
|
new_audio = [] |
|
max_length = 0 |
|
|
|
for i in range(batch_size): |
|
audio = audio_list[i] |
|
in_sr = in_sr_list[i] |
|
if len(audio.shape) == 3 and audio.shape[0] == 1: |
|
|
|
audio = audio.squeeze(0) |
|
elif len(audio.shape) == 1: |
|
|
|
audio = audio.unsqueeze(0) |
|
assert len(audio.shape)==2, "Audio should be shape (Channels x Length) with no batch dimension" |
|
|
|
if in_sr != self.sample_rate: |
|
resample_tf = T.Resample(in_sr, self.sample_rate).to(audio.device) |
|
audio = resample_tf(audio) |
|
new_audio.append(audio) |
|
if audio.shape[-1] > max_length: |
|
max_length = audio.shape[-1] |
|
|
|
padded_audio_length = max_length + (self.min_length - (max_length % self.min_length)) % self.min_length |
|
for i in range(batch_size): |
|
|
|
new_audio[i] = prepare_audio(new_audio[i], in_sr=in_sr, target_sr=in_sr, target_length=padded_audio_length, |
|
target_channels=self.in_channels, device=new_audio[i].device).squeeze(0) |
|
|
|
return torch.stack(new_audio) |
|
|
|
def encode_audio(self, audio, chunked=False, overlap=32, chunk_size=128, **kwargs): |
|
''' |
|
Encode audios into latents. Audios should already be preprocesed by preprocess_audio_for_encoder. |
|
If chunked is True, split the audio into chunks of a given maximum size chunk_size, with given overlap. |
|
Overlap and chunk_size params are both measured in number of latents (not audio samples) |
|
# and therefore you likely could use the same values with decode_audio. |
|
A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size. |
|
Every autoencoder will have a different receptive field size, and thus ideal overlap. |
|
You can determine it empirically by diffing unchunked vs chunked output and looking at maximum diff. |
|
The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks. |
|
Smaller chunk_size uses less memory, but more compute. |
|
The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version |
|
For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks |
|
''' |
|
if not chunked: |
|
|
|
return self.encode(audio, **kwargs) |
|
else: |
|
|
|
|
|
samples_per_latent = self.downsampling_ratio |
|
total_size = audio.shape[2] |
|
batch_size = audio.shape[0] |
|
chunk_size *= samples_per_latent |
|
overlap *= samples_per_latent |
|
hop_size = chunk_size - overlap |
|
chunks = [] |
|
for i in range(0, total_size - chunk_size + 1, hop_size): |
|
chunk = audio[:,:,i:i+chunk_size] |
|
chunks.append(chunk) |
|
if i+chunk_size != total_size: |
|
|
|
chunk = audio[:,:,-chunk_size:] |
|
chunks.append(chunk) |
|
chunks = torch.stack(chunks) |
|
num_chunks = chunks.shape[0] |
|
|
|
|
|
|
|
y_size = total_size // samples_per_latent |
|
|
|
y_final = torch.zeros((batch_size,self.latent_dim,y_size)).to(audio.device) |
|
for i in range(num_chunks): |
|
x_chunk = chunks[i,:] |
|
|
|
y_chunk = self.encode(x_chunk) |
|
|
|
if i == num_chunks-1: |
|
|
|
t_end = y_size |
|
t_start = t_end - y_chunk.shape[2] |
|
else: |
|
t_start = i * hop_size // samples_per_latent |
|
t_end = t_start + chunk_size // samples_per_latent |
|
|
|
ol = overlap//samples_per_latent//2 |
|
chunk_start = 0 |
|
chunk_end = y_chunk.shape[2] |
|
if i > 0: |
|
|
|
t_start += ol |
|
chunk_start += ol |
|
if i < num_chunks-1: |
|
|
|
t_end -= ol |
|
chunk_end -= ol |
|
|
|
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end] |
|
return y_final |
|
|
|
def decode_audio(self, latents, chunked=False, overlap=32, chunk_size=128, **kwargs): |
|
''' |
|
Decode latents to audio. |
|
If chunked is True, split the latents into chunks of a given maximum size chunk_size, with given overlap, both of which are measured in number of latents. |
|
A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size. |
|
Every autoencoder will have a different receptive field size, and thus ideal overlap. |
|
You can determine it empirically by diffing unchunked vs chunked audio and looking at maximum diff. |
|
The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks. |
|
Smaller chunk_size uses less memory, but more compute. |
|
The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version |
|
For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks |
|
''' |
|
if not chunked: |
|
|
|
return self.decode(latents, **kwargs) |
|
else: |
|
|
|
hop_size = chunk_size - overlap |
|
total_size = latents.shape[2] |
|
batch_size = latents.shape[0] |
|
chunks = [] |
|
for i in range(0, total_size - chunk_size + 1, hop_size): |
|
chunk = latents[:,:,i:i+chunk_size] |
|
chunks.append(chunk) |
|
if i+chunk_size != total_size: |
|
|
|
chunk = latents[:,:,-chunk_size:] |
|
chunks.append(chunk) |
|
chunks = torch.stack(chunks) |
|
num_chunks = chunks.shape[0] |
|
|
|
samples_per_latent = self.downsampling_ratio |
|
|
|
y_size = total_size * samples_per_latent |
|
y_final = torch.zeros((batch_size,self.out_channels,y_size)).to(latents.device) |
|
for i in range(num_chunks): |
|
x_chunk = chunks[i,:] |
|
|
|
y_chunk = self.decode(x_chunk) |
|
|
|
if i == num_chunks-1: |
|
|
|
t_end = y_size |
|
t_start = t_end - y_chunk.shape[2] |
|
else: |
|
t_start = i * hop_size * samples_per_latent |
|
t_end = t_start + chunk_size * samples_per_latent |
|
|
|
ol = (overlap//2) * samples_per_latent |
|
chunk_start = 0 |
|
chunk_end = y_chunk.shape[2] |
|
if i > 0: |
|
|
|
t_start += ol |
|
chunk_start += ol |
|
if i < num_chunks-1: |
|
|
|
t_end -= ol |
|
chunk_end -= ol |
|
|
|
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end] |
|
return y_final |
|
|
|
|
|
|
|
|
|
def create_encoder_from_config(encoder_config: Dict[str, Any]): |
|
encoder_type = encoder_config.get("type", None) |
|
assert encoder_type is not None, "Encoder type must be specified" |
|
|
|
if encoder_type == "oobleck": |
|
encoder = OobleckEncoder( |
|
**encoder_config["config"] |
|
) |
|
|
|
elif encoder_type == "seanet": |
|
from encodec.modules import SEANetEncoder |
|
seanet_encoder_config = encoder_config["config"] |
|
|
|
|
|
seanet_encoder_config["ratios"] = list(reversed(seanet_encoder_config.get("ratios", [2, 2, 2, 2, 2]))) |
|
encoder = SEANetEncoder( |
|
**seanet_encoder_config |
|
) |
|
elif encoder_type == "dac": |
|
dac_config = encoder_config["config"] |
|
|
|
encoder = DACEncoderWrapper(**dac_config) |
|
elif encoder_type == "local_attn": |
|
from .local_attention import TransformerEncoder1D |
|
|
|
local_attn_config = encoder_config["config"] |
|
|
|
encoder = TransformerEncoder1D( |
|
**local_attn_config |
|
) |
|
else: |
|
raise ValueError(f"Unknown encoder type {encoder_type}") |
|
|
|
requires_grad = encoder_config.get("requires_grad", True) |
|
if not requires_grad: |
|
for param in encoder.parameters(): |
|
param.requires_grad = False |
|
|
|
return encoder |
|
|
|
def create_decoder_from_config(decoder_config: Dict[str, Any]): |
|
decoder_type = decoder_config.get("type", None) |
|
assert decoder_type is not None, "Decoder type must be specified" |
|
|
|
if decoder_type == "oobleck": |
|
decoder = OobleckDecoder( |
|
**decoder_config["config"] |
|
) |
|
elif decoder_type == "seanet": |
|
from encodec.modules import SEANetDecoder |
|
|
|
decoder = SEANetDecoder( |
|
**decoder_config["config"] |
|
) |
|
elif decoder_type == "dac": |
|
dac_config = decoder_config["config"] |
|
|
|
decoder = DACDecoderWrapper(**dac_config) |
|
elif decoder_type == "local_attn": |
|
from .local_attention import TransformerDecoder1D |
|
|
|
local_attn_config = decoder_config["config"] |
|
|
|
decoder = TransformerDecoder1D( |
|
**local_attn_config |
|
) |
|
else: |
|
raise ValueError(f"Unknown decoder type {decoder_type}") |
|
|
|
requires_grad = decoder_config.get("requires_grad", True) |
|
if not requires_grad: |
|
for param in decoder.parameters(): |
|
param.requires_grad = False |
|
|
|
return decoder |
|
|
|
def create_autoencoder_from_config(config: Dict[str, Any]): |
|
|
|
ae_config = config["model"] |
|
|
|
encoder = create_encoder_from_config(ae_config["encoder"]) |
|
decoder = create_decoder_from_config(ae_config["decoder"]) |
|
|
|
bottleneck = ae_config.get("bottleneck", None) |
|
|
|
latent_dim = ae_config.get("latent_dim", None) |
|
assert latent_dim is not None, "latent_dim must be specified in model config" |
|
downsampling_ratio = ae_config.get("downsampling_ratio", None) |
|
assert downsampling_ratio is not None, "downsampling_ratio must be specified in model config" |
|
io_channels = ae_config.get("io_channels", None) |
|
assert io_channels is not None, "io_channels must be specified in model config" |
|
sample_rate = config.get("sample_rate", None) |
|
assert sample_rate is not None, "sample_rate must be specified in model config" |
|
|
|
in_channels = ae_config.get("in_channels", None) |
|
out_channels = ae_config.get("out_channels", None) |
|
|
|
pretransform = ae_config.get("pretransform", None) |
|
|
|
if pretransform is not None: |
|
pretransform = create_pretransform_from_config(pretransform, sample_rate) |
|
|
|
if bottleneck is not None: |
|
bottleneck = create_bottleneck_from_config(bottleneck) |
|
|
|
soft_clip = ae_config["decoder"].get("soft_clip", False) |
|
|
|
return AudioAutoencoder( |
|
encoder, |
|
decoder, |
|
io_channels=io_channels, |
|
latent_dim=latent_dim, |
|
downsampling_ratio=downsampling_ratio, |
|
sample_rate=sample_rate, |
|
bottleneck=bottleneck, |
|
pretransform=pretransform, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
soft_clip=soft_clip |
|
) |