Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import pandas as pd | |
import torch | |
import librosa | |
import numpy as np | |
import soundfile as sf | |
from tqdm import tqdm | |
from .utils import scale_shift_re | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
""" | |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
""" | |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
def inference(autoencoder, unet, gt, gt_mask, | |
tokenizer, text_encoder, | |
params, noise_scheduler, | |
text_raw, neg_text=None, | |
audio_frames=500, | |
guidance_scale=3, guidance_rescale=0.0, | |
ddim_steps=50, eta=1, random_seed=2024, | |
device='cuda', | |
): | |
if neg_text is None: | |
neg_text = [""] | |
if tokenizer is not None: | |
text_batch = tokenizer(text_raw, | |
max_length=params['text_encoder']['max_length'], | |
padding="max_length", truncation=True, return_tensors="pt") | |
text, text_mask = text_batch.input_ids.to(device), text_batch.attention_mask.to(device).bool() | |
text = text_encoder(input_ids=text, attention_mask=text_mask).last_hidden_state | |
uncond_text_batch = tokenizer(neg_text, | |
max_length=params['text_encoder']['max_length'], | |
padding="max_length", truncation=True, return_tensors="pt") | |
uncond_text, uncond_text_mask = uncond_text_batch.input_ids.to(device), uncond_text_batch.attention_mask.to(device).bool() | |
uncond_text = text_encoder(input_ids=uncond_text, | |
attention_mask=uncond_text_mask).last_hidden_state | |
else: | |
text, text_mask = None, None | |
guidance_scale = None | |
codec_dim = params['model']['out_chans'] | |
unet.eval() | |
if random_seed is not None: | |
generator = torch.Generator(device=device).manual_seed(random_seed) | |
else: | |
generator = torch.Generator(device=device) | |
generator.seed() | |
noise_scheduler.set_timesteps(ddim_steps) | |
# init noise | |
noise = torch.randn((1, codec_dim, audio_frames), generator=generator, device=device) | |
latents = noise | |
for t in noise_scheduler.timesteps: | |
latents = noise_scheduler.scale_model_input(latents, t) | |
if guidance_scale: | |
latents_combined = torch.cat([latents, latents], dim=0) | |
text_combined = torch.cat([text, uncond_text], dim=0) | |
text_mask_combined = torch.cat([text_mask, uncond_text_mask], dim=0) | |
if gt is not None: | |
gt_combined = torch.cat([gt, gt], dim=0) | |
gt_mask_combined = torch.cat([gt_mask, gt_mask], dim=0) | |
else: | |
gt_combined = None | |
gt_mask_combined = None | |
output_combined, _ = unet(latents_combined, t, text_combined, context_mask=text_mask_combined, | |
cls_token=None, gt=gt_combined, mae_mask_infer=gt_mask_combined) | |
output_text, output_uncond = torch.chunk(output_combined, 2, dim=0) | |
output_pred = output_uncond + guidance_scale * (output_text - output_uncond) | |
if guidance_rescale > 0.0: | |
output_pred = rescale_noise_cfg(output_pred, output_text, | |
guidance_rescale=guidance_rescale) | |
else: | |
output_pred, mae_mask = unet(latents, t, text, context_mask=text_mask, | |
cls_token=None, gt=gt, mae_mask_infer=gt_mask) | |
latents = noise_scheduler.step(model_output=output_pred, timestep=t, | |
sample=latents, | |
eta=eta, generator=generator).prev_sample | |
pred = scale_shift_re(latents, params['autoencoder']['scale'], | |
params['autoencoder']['shift']) | |
if gt is not None: | |
pred[~gt_mask] = gt[~gt_mask] | |
pred_wav = autoencoder(embedding=pred) | |
return pred_wav | |
def eval_udit(autoencoder, unet, | |
tokenizer, text_encoder, | |
params, noise_scheduler, | |
val_df, subset, | |
audio_frames, mae=False, | |
guidance_scale=3, guidance_rescale=0.0, | |
ddim_steps=50, eta=1, random_seed=2023, | |
device='cuda', | |
epoch=0, save_path='logs/eval/', val_num=5): | |
val_df = pd.read_csv(val_df) | |
val_df = val_df[val_df['split'] == subset] | |
if mae: | |
val_df = val_df[val_df['audio_length'] != 0] | |
save_path = save_path + str(epoch) + '/' | |
os.makedirs(save_path, exist_ok=True) | |
for i in tqdm(range(len(val_df))): | |
row = val_df.iloc[i] | |
text = [row['caption']] | |
if mae: | |
audio_path = params['data']['val_dir'] + str(row['audio_path']) | |
gt, sr = librosa.load(audio_path, sr=params['data']['sr']) | |
gt = gt / (np.max(np.abs(gt)) + 1e-9) | |
sf.write(save_path + text[0] + '_gt.wav', gt, samplerate=params['data']['sr']) | |
num_samples = 10 * sr | |
if len(gt) < num_samples: | |
padding = num_samples - len(gt) | |
gt = np.pad(gt, (0, padding), 'constant') | |
else: | |
gt = gt[:num_samples] | |
gt = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device) | |
gt = autoencoder(audio=gt) | |
B, D, L = gt.shape | |
mask_len = int(L * 0.2) | |
gt_mask = torch.zeros(B, D, L).to(device) | |
for _ in range(2): | |
start = random.randint(0, L - mask_len) | |
gt_mask[:, :, start:start + mask_len] = 1 | |
gt_mask = gt_mask.bool() | |
else: | |
gt = None | |
gt_mask = None | |
pred = inference(autoencoder, unet, gt, gt_mask, | |
tokenizer, text_encoder, | |
params, noise_scheduler, | |
text, neg_text=None, | |
audio_frames=audio_frames, | |
guidance_scale=guidance_scale, guidance_rescale=guidance_rescale, | |
ddim_steps=ddim_steps, eta=eta, random_seed=random_seed, | |
device=device) | |
pred = pred.cpu().numpy().squeeze(0).squeeze(0) | |
sf.write(save_path + text[0] + '.wav', pred, samplerate=params['data']['sr']) | |
if i + 1 >= val_num: | |
break | |