Spaces:
Running
on
Zero
Running
on
Zero
import tempfile | |
import typing | |
import zipfile | |
from pathlib import Path | |
import markdown2 as md | |
import matplotlib.pyplot as plt | |
import torch | |
from IPython.display import HTML | |
def audio_table( | |
audio_dict: dict, | |
first_column: str = None, | |
format_fn: typing.Callable = None, | |
**kwargs, | |
): # pragma: no cover | |
"""Embeds an audio table into HTML, or as the output cell | |
in a notebook. | |
Parameters | |
---------- | |
audio_dict : dict | |
Dictionary of data to embed. | |
first_column : str, optional | |
The label for the first column of the table, by default None | |
format_fn : typing.Callable, optional | |
How to format the data, by default None | |
Returns | |
------- | |
str | |
Table as a string | |
Examples | |
-------- | |
>>> audio_dict = {} | |
>>> for i in range(signal_batch.batch_size): | |
>>> audio_dict[i] = { | |
>>> "input": signal_batch[i], | |
>>> "output": output_batch[i] | |
>>> } | |
>>> audiotools.post.audio_zip(audio_dict) | |
""" | |
from audiotools import AudioSignal | |
output = [] | |
columns = None | |
def _default_format_fn(label, x, **kwargs): | |
if torch.is_tensor(x): | |
x = x.tolist() | |
if x is None: | |
return "." | |
elif isinstance(x, AudioSignal): | |
return x.embed(display=False, return_html=True, **kwargs) | |
else: | |
return str(x) | |
if format_fn is None: | |
format_fn = _default_format_fn | |
if first_column is None: | |
first_column = "." | |
for k, v in audio_dict.items(): | |
if not isinstance(v, dict): | |
v = {"Audio": v} | |
v_keys = list(v.keys()) | |
if columns is None: | |
columns = [first_column] + v_keys | |
output.append(" | ".join(columns)) | |
layout = "|---" + len(v_keys) * "|:-:" | |
output.append(layout) | |
formatted_audio = [] | |
for col in columns[1:]: | |
formatted_audio.append(format_fn(col, v[col], **kwargs)) | |
row = f"| {k} | " | |
row += " | ".join(formatted_audio) | |
output.append(row) | |
output = "\n" + "\n".join(output) | |
return output | |
def in_notebook(): # pragma: no cover | |
"""Determines if code is running in a notebook. | |
Returns | |
------- | |
bool | |
Whether or not this is running in a notebook. | |
""" | |
try: | |
from IPython import get_ipython | |
if "IPKernelApp" not in get_ipython().config: # pragma: no cover | |
return False | |
except ImportError: | |
return False | |
except AttributeError: | |
return False | |
return True | |
def disp(obj, **kwargs): # pragma: no cover | |
"""Displays an object, depending on if its in a notebook | |
or not. | |
Parameters | |
---------- | |
obj : typing.Any | |
Any object to display. | |
""" | |
from audiotools import AudioSignal | |
IN_NOTEBOOK = in_notebook() | |
if isinstance(obj, AudioSignal): | |
audio_elem = obj.embed(display=False, return_html=True) | |
if IN_NOTEBOOK: | |
return HTML(audio_elem) | |
else: | |
print(audio_elem) | |
if isinstance(obj, dict): | |
table = audio_table(obj, **kwargs) | |
if IN_NOTEBOOK: | |
return HTML(md.markdown(table, extras=["tables"])) | |
else: | |
print(table) | |
if isinstance(obj, plt.Figure): | |
plt.show() | |