Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import math | |
import numpy as np | |
from torch import nn | |
from torch.nn import functional as F | |
from torchaudio import transforms as T | |
from alias_free_torch import Activation1d | |
from .nn.layers import WNConv1d, WNConvTranspose1d | |
from typing import Literal, Dict, Any | |
# from .inference.sampling import sample | |
from .utils import prepare_audio | |
from .blocks import SnakeBeta | |
from .bottleneck import Bottleneck, DiscreteBottleneck | |
from .factory import create_pretransform_from_config, create_bottleneck_from_config | |
from .pretransforms import Pretransform | |
def checkpoint(function, *args, **kwargs): | |
kwargs.setdefault("use_reentrant", False) | |
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs) | |
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module: | |
if activation == "elu": | |
act = nn.ELU() | |
elif activation == "snake": | |
act = SnakeBeta(channels) | |
elif activation == "none": | |
act = nn.Identity() | |
else: | |
raise ValueError(f"Unknown activation {activation}") | |
if antialias: | |
act = Activation1d(act) | |
return act | |
class ResidualUnit(nn.Module): | |
def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False): | |
super().__init__() | |
self.dilation = dilation | |
padding = (dilation * (7-1)) // 2 | |
self.layers = nn.Sequential( | |
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels), | |
WNConv1d(in_channels=in_channels, out_channels=out_channels, | |
kernel_size=7, dilation=dilation, padding=padding), | |
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels), | |
WNConv1d(in_channels=out_channels, out_channels=out_channels, | |
kernel_size=1) | |
) | |
def forward(self, x): | |
res = x | |
#x = checkpoint(self.layers, x) | |
x = self.layers(x) | |
return x + res | |
class EncoderBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False): | |
super().__init__() | |
self.layers = nn.Sequential( | |
ResidualUnit(in_channels=in_channels, | |
out_channels=in_channels, dilation=1, use_snake=use_snake), | |
ResidualUnit(in_channels=in_channels, | |
out_channels=in_channels, dilation=3, use_snake=use_snake), | |
ResidualUnit(in_channels=in_channels, | |
out_channels=in_channels, dilation=9, use_snake=use_snake), | |
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels), | |
WNConv1d(in_channels=in_channels, out_channels=out_channels, | |
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)), | |
) | |
def forward(self, x): | |
return self.layers(x) | |
class DecoderBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False): | |
super().__init__() | |
if use_nearest_upsample: | |
upsample_layer = nn.Sequential( | |
nn.Upsample(scale_factor=stride, mode="nearest"), | |
WNConv1d(in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=2*stride, | |
stride=1, | |
bias=False, | |
padding='same') | |
) | |
else: | |
upsample_layer = WNConvTranspose1d(in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)) | |
self.layers = nn.Sequential( | |
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels), | |
upsample_layer, | |
ResidualUnit(in_channels=out_channels, out_channels=out_channels, | |
dilation=1, use_snake=use_snake), | |
ResidualUnit(in_channels=out_channels, out_channels=out_channels, | |
dilation=3, use_snake=use_snake), | |
ResidualUnit(in_channels=out_channels, out_channels=out_channels, | |
dilation=9, use_snake=use_snake), | |
) | |
def forward(self, x): | |
return self.layers(x) | |
class OobleckEncoder(nn.Module): | |
def __init__(self, | |
in_channels=2, | |
channels=128, | |
latent_dim=32, | |
c_mults = [1, 2, 4, 8], | |
strides = [2, 4, 8, 8], | |
use_snake=False, | |
antialias_activation=False | |
): | |
super().__init__() | |
c_mults = [1] + c_mults | |
self.depth = len(c_mults) | |
layers = [ | |
WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3) | |
] | |
for i in range(self.depth-1): | |
layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)] | |
layers += [ | |
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels), | |
WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1) | |
] | |
self.layers = nn.Sequential(*layers) | |
def forward(self, x): | |
return self.layers(x) | |
class OobleckDecoder(nn.Module): | |
def __init__(self, | |
out_channels=2, | |
channels=128, | |
latent_dim=32, | |
c_mults = [1, 2, 4, 8], | |
strides = [2, 4, 8, 8], | |
use_snake=False, | |
antialias_activation=False, | |
use_nearest_upsample=False, | |
final_tanh=True): | |
super().__init__() | |
c_mults = [1] + c_mults | |
self.depth = len(c_mults) | |
layers = [ | |
WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3), | |
] | |
for i in range(self.depth-1, 0, -1): | |
layers += [DecoderBlock( | |
in_channels=c_mults[i]*channels, | |
out_channels=c_mults[i-1]*channels, | |
stride=strides[i-1], | |
use_snake=use_snake, | |
antialias_activation=antialias_activation, | |
use_nearest_upsample=use_nearest_upsample | |
) | |
] | |
layers += [ | |
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels), | |
WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False), | |
nn.Tanh() if final_tanh else nn.Identity() | |
] | |
self.layers = nn.Sequential(*layers) | |
def forward(self, x): | |
return self.layers(x) | |
class DACEncoderWrapper(nn.Module): | |
def __init__(self, in_channels=1, **kwargs): | |
super().__init__() | |
from dac.model.dac import Encoder as DACEncoder | |
latent_dim = kwargs.pop("latent_dim", None) | |
encoder_out_dim = kwargs["d_model"] * (2 ** len(kwargs["strides"])) | |
self.encoder = DACEncoder(d_latent=encoder_out_dim, **kwargs) | |
self.latent_dim = latent_dim | |
# Latent-dim support was added to DAC after this was first written, and implemented differently, so this is for backwards compatibility | |
self.proj_out = nn.Conv1d(self.encoder.enc_dim, latent_dim, kernel_size=1) if latent_dim is not None else nn.Identity() | |
if in_channels != 1: | |
self.encoder.block[0] = WNConv1d(in_channels, kwargs.get("d_model", 64), kernel_size=7, padding=3) | |
def forward(self, x): | |
x = self.encoder(x) | |
x = self.proj_out(x) | |
return x | |
class DACDecoderWrapper(nn.Module): | |
def __init__(self, latent_dim, out_channels=1, **kwargs): | |
super().__init__() | |
from dac.model.dac import Decoder as DACDecoder | |
self.decoder = DACDecoder(**kwargs, input_channel = latent_dim, d_out=out_channels) | |
self.latent_dim = latent_dim | |
def forward(self, x): | |
return self.decoder(x) | |
class AudioAutoencoder(nn.Module): | |
def __init__( | |
self, | |
encoder, | |
decoder, | |
latent_dim, | |
downsampling_ratio, | |
sample_rate, | |
io_channels=2, | |
bottleneck: Bottleneck = None, | |
pretransform: Pretransform = None, | |
in_channels = None, | |
out_channels = None, | |
soft_clip = False | |
): | |
super().__init__() | |
self.downsampling_ratio = downsampling_ratio | |
self.sample_rate = sample_rate | |
self.latent_dim = latent_dim | |
self.io_channels = io_channels | |
self.in_channels = io_channels | |
self.out_channels = io_channels | |
self.min_length = self.downsampling_ratio | |
if in_channels is not None: | |
self.in_channels = in_channels | |
if out_channels is not None: | |
self.out_channels = out_channels | |
self.bottleneck = bottleneck | |
self.encoder = encoder | |
self.decoder = decoder | |
self.pretransform = pretransform | |
self.soft_clip = soft_clip | |
self.is_discrete = self.bottleneck is not None and self.bottleneck.is_discrete | |
def encode(self, audio, return_info=False, skip_pretransform=False, iterate_batch=False, **kwargs): | |
info = {} | |
if self.pretransform is not None and not skip_pretransform: | |
if self.pretransform.enable_grad: | |
if iterate_batch: | |
audios = [] | |
for i in range(audio.shape[0]): | |
audios.append(self.pretransform.encode(audio[i:i+1])) | |
audio = torch.cat(audios, dim=0) | |
else: | |
audio = self.pretransform.encode(audio) | |
else: | |
with torch.no_grad(): | |
if iterate_batch: | |
audios = [] | |
for i in range(audio.shape[0]): | |
audios.append(self.pretransform.encode(audio[i:i+1])) | |
audio = torch.cat(audios, dim=0) | |
else: | |
audio = self.pretransform.encode(audio) | |
if self.encoder is not None: | |
if iterate_batch: | |
latents = [] | |
for i in range(audio.shape[0]): | |
latents.append(self.encoder(audio[i:i+1])) | |
latents = torch.cat(latents, dim=0) | |
else: | |
latents = self.encoder(audio) | |
else: | |
latents = audio | |
if self.bottleneck is not None: | |
# TODO: Add iterate batch logic, needs to merge the info dicts | |
latents, bottleneck_info = self.bottleneck.encode(latents, return_info=True, **kwargs) | |
info.update(bottleneck_info) | |
if return_info: | |
return latents, info | |
return latents | |
def decode(self, latents, iterate_batch=False, **kwargs): | |
if self.bottleneck is not None: | |
if iterate_batch: | |
decoded = [] | |
for i in range(latents.shape[0]): | |
decoded.append(self.bottleneck.decode(latents[i:i+1])) | |
decoded = torch.cat(decoded, dim=0) | |
else: | |
latents = self.bottleneck.decode(latents) | |
if iterate_batch: | |
decoded = [] | |
for i in range(latents.shape[0]): | |
decoded.append(self.decoder(latents[i:i+1])) | |
decoded = torch.cat(decoded, dim=0) | |
else: | |
decoded = self.decoder(latents, **kwargs) | |
if self.pretransform is not None: | |
if self.pretransform.enable_grad: | |
if iterate_batch: | |
decodeds = [] | |
for i in range(decoded.shape[0]): | |
decodeds.append(self.pretransform.decode(decoded[i:i+1])) | |
decoded = torch.cat(decodeds, dim=0) | |
else: | |
decoded = self.pretransform.decode(decoded) | |
else: | |
with torch.no_grad(): | |
if iterate_batch: | |
decodeds = [] | |
for i in range(latents.shape[0]): | |
decodeds.append(self.pretransform.decode(decoded[i:i+1])) | |
decoded = torch.cat(decodeds, dim=0) | |
else: | |
decoded = self.pretransform.decode(decoded) | |
if self.soft_clip: | |
decoded = torch.tanh(decoded) | |
return decoded | |
def decode_tokens(self, tokens, **kwargs): | |
''' | |
Decode discrete tokens to audio | |
Only works with discrete autoencoders | |
''' | |
assert isinstance(self.bottleneck, DiscreteBottleneck), "decode_tokens only works with discrete autoencoders" | |
latents = self.bottleneck.decode_tokens(tokens, **kwargs) | |
return self.decode(latents, **kwargs) | |
def preprocess_audio_for_encoder(self, audio, in_sr): | |
''' | |
Preprocess single audio tensor (Channels x Length) to be compatible with the encoder. | |
If the model is mono, stereo audio will be converted to mono. | |
Audio will be silence-padded to be a multiple of the model's downsampling ratio. | |
Audio will be resampled to the model's sample rate. | |
The output will have batch size 1 and be shape (1 x Channels x Length) | |
''' | |
return self.preprocess_audio_list_for_encoder([audio], [in_sr]) | |
def preprocess_audio_list_for_encoder(self, audio_list, in_sr_list): | |
''' | |
Preprocess a [list] of audio (Channels x Length) into a batch tensor to be compatable with the encoder. | |
The audio in that list can be of different lengths and channels. | |
in_sr can be an integer or list. If it's an integer it will be assumed it is the input sample_rate for every audio. | |
All audio will be resampled to the model's sample rate. | |
Audio will be silence-padded to the longest length, and further padded to be a multiple of the model's downsampling ratio. | |
If the model is mono, all audio will be converted to mono. | |
The output will be a tensor of shape (Batch x Channels x Length) | |
''' | |
batch_size = len(audio_list) | |
if isinstance(in_sr_list, int): | |
in_sr_list = [in_sr_list]*batch_size | |
assert len(in_sr_list) == batch_size, "list of sample rates must be the same length of audio_list" | |
new_audio = [] | |
max_length = 0 | |
# resample & find the max length | |
for i in range(batch_size): | |
audio = audio_list[i] | |
in_sr = in_sr_list[i] | |
if len(audio.shape) == 3 and audio.shape[0] == 1: | |
# batchsize 1 was given by accident. Just squeeze it. | |
audio = audio.squeeze(0) | |
elif len(audio.shape) == 1: | |
# Mono signal, channel dimension is missing, unsqueeze it in | |
audio = audio.unsqueeze(0) | |
assert len(audio.shape)==2, "Audio should be shape (Channels x Length) with no batch dimension" | |
# Resample audio | |
if in_sr != self.sample_rate: | |
resample_tf = T.Resample(in_sr, self.sample_rate).to(audio.device) | |
audio = resample_tf(audio) | |
new_audio.append(audio) | |
if audio.shape[-1] > max_length: | |
max_length = audio.shape[-1] | |
# Pad every audio to the same length, multiple of model's downsampling ratio | |
padded_audio_length = max_length + (self.min_length - (max_length % self.min_length)) % self.min_length | |
for i in range(batch_size): | |
# Pad it & if necessary, mixdown/duplicate stereo/mono channels to support model | |
new_audio[i] = prepare_audio(new_audio[i], in_sr=in_sr, target_sr=in_sr, target_length=padded_audio_length, | |
target_channels=self.in_channels, device=new_audio[i].device).squeeze(0) | |
# convert to tensor | |
return torch.stack(new_audio) | |
def encode_audio(self, audio, chunked=False, overlap=32, chunk_size=128, **kwargs): | |
''' | |
Encode audios into latents. Audios should already be preprocesed by preprocess_audio_for_encoder. | |
If chunked is True, split the audio into chunks of a given maximum size chunk_size, with given overlap. | |
Overlap and chunk_size params are both measured in number of latents (not audio samples) | |
# and therefore you likely could use the same values with decode_audio. | |
A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size. | |
Every autoencoder will have a different receptive field size, and thus ideal overlap. | |
You can determine it empirically by diffing unchunked vs chunked output and looking at maximum diff. | |
The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks. | |
Smaller chunk_size uses less memory, but more compute. | |
The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version | |
For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks | |
''' | |
if not chunked: | |
# default behavior. Encode the entire audio in parallel | |
return self.encode(audio, **kwargs) | |
else: | |
# CHUNKED ENCODING | |
# samples_per_latent is just the downsampling ratio (which is also the upsampling ratio) | |
samples_per_latent = self.downsampling_ratio | |
total_size = audio.shape[2] # in samples | |
batch_size = audio.shape[0] | |
chunk_size *= samples_per_latent # converting metric in latents to samples | |
overlap *= samples_per_latent # converting metric in latents to samples | |
hop_size = chunk_size - overlap | |
chunks = [] | |
for i in range(0, total_size - chunk_size + 1, hop_size): | |
chunk = audio[:,:,i:i+chunk_size] | |
chunks.append(chunk) | |
if i+chunk_size != total_size: | |
# Final chunk | |
chunk = audio[:,:,-chunk_size:] | |
chunks.append(chunk) | |
chunks = torch.stack(chunks) | |
num_chunks = chunks.shape[0] | |
# Note: y_size might be a different value from the latent length used in diffusion training | |
# because we can encode audio of varying lengths | |
# However, the audio should've been padded to a multiple of samples_per_latent by now. | |
y_size = total_size // samples_per_latent | |
# Create an empty latent, we will populate it with chunks as we encode them | |
y_final = torch.zeros((batch_size,self.latent_dim,y_size)).to(audio.device) | |
for i in range(num_chunks): | |
x_chunk = chunks[i,:] | |
# encode the chunk | |
y_chunk = self.encode(x_chunk) | |
# figure out where to put the audio along the time domain | |
if i == num_chunks-1: | |
# final chunk always goes at the end | |
t_end = y_size | |
t_start = t_end - y_chunk.shape[2] | |
else: | |
t_start = i * hop_size // samples_per_latent | |
t_end = t_start + chunk_size // samples_per_latent | |
# remove the edges of the overlaps | |
ol = overlap//samples_per_latent//2 | |
chunk_start = 0 | |
chunk_end = y_chunk.shape[2] | |
if i > 0: | |
# no overlap for the start of the first chunk | |
t_start += ol | |
chunk_start += ol | |
if i < num_chunks-1: | |
# no overlap for the end of the last chunk | |
t_end -= ol | |
chunk_end -= ol | |
# paste the chunked audio into our y_final output audio | |
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end] | |
return y_final | |
def decode_audio(self, latents, chunked=False, overlap=32, chunk_size=128, **kwargs): | |
''' | |
Decode latents to audio. | |
If chunked is True, split the latents into chunks of a given maximum size chunk_size, with given overlap, both of which are measured in number of latents. | |
A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size. | |
Every autoencoder will have a different receptive field size, and thus ideal overlap. | |
You can determine it empirically by diffing unchunked vs chunked audio and looking at maximum diff. | |
The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks. | |
Smaller chunk_size uses less memory, but more compute. | |
The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version | |
For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks | |
''' | |
if not chunked: | |
# default behavior. Decode the entire latent in parallel | |
return self.decode(latents, **kwargs) | |
else: | |
# chunked decoding | |
hop_size = chunk_size - overlap | |
total_size = latents.shape[2] | |
batch_size = latents.shape[0] | |
chunks = [] | |
for i in range(0, total_size - chunk_size + 1, hop_size): | |
chunk = latents[:,:,i:i+chunk_size] | |
chunks.append(chunk) | |
if i+chunk_size != total_size: | |
# Final chunk | |
chunk = latents[:,:,-chunk_size:] | |
chunks.append(chunk) | |
chunks = torch.stack(chunks) | |
num_chunks = chunks.shape[0] | |
# samples_per_latent is just the downsampling ratio | |
samples_per_latent = self.downsampling_ratio | |
# Create an empty waveform, we will populate it with chunks as decode them | |
y_size = total_size * samples_per_latent | |
y_final = torch.zeros((batch_size,self.out_channels,y_size)).to(latents.device) | |
for i in range(num_chunks): | |
x_chunk = chunks[i,:] | |
# decode the chunk | |
y_chunk = self.decode(x_chunk) | |
# figure out where to put the audio along the time domain | |
if i == num_chunks-1: | |
# final chunk always goes at the end | |
t_end = y_size | |
t_start = t_end - y_chunk.shape[2] | |
else: | |
t_start = i * hop_size * samples_per_latent | |
t_end = t_start + chunk_size * samples_per_latent | |
# remove the edges of the overlaps | |
ol = (overlap//2) * samples_per_latent | |
chunk_start = 0 | |
chunk_end = y_chunk.shape[2] | |
if i > 0: | |
# no overlap for the start of the first chunk | |
t_start += ol | |
chunk_start += ol | |
if i < num_chunks-1: | |
# no overlap for the end of the last chunk | |
t_end -= ol | |
chunk_end -= ol | |
# paste the chunked audio into our y_final output audio | |
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end] | |
return y_final | |
# AE factories | |
def create_encoder_from_config(encoder_config: Dict[str, Any]): | |
encoder_type = encoder_config.get("type", None) | |
assert encoder_type is not None, "Encoder type must be specified" | |
if encoder_type == "oobleck": | |
encoder = OobleckEncoder( | |
**encoder_config["config"] | |
) | |
elif encoder_type == "seanet": | |
from encodec.modules import SEANetEncoder | |
seanet_encoder_config = encoder_config["config"] | |
#SEANet encoder expects strides in reverse order | |
seanet_encoder_config["ratios"] = list(reversed(seanet_encoder_config.get("ratios", [2, 2, 2, 2, 2]))) | |
encoder = SEANetEncoder( | |
**seanet_encoder_config | |
) | |
elif encoder_type == "dac": | |
dac_config = encoder_config["config"] | |
encoder = DACEncoderWrapper(**dac_config) | |
elif encoder_type == "local_attn": | |
from .local_attention import TransformerEncoder1D | |
local_attn_config = encoder_config["config"] | |
encoder = TransformerEncoder1D( | |
**local_attn_config | |
) | |
else: | |
raise ValueError(f"Unknown encoder type {encoder_type}") | |
requires_grad = encoder_config.get("requires_grad", True) | |
if not requires_grad: | |
for param in encoder.parameters(): | |
param.requires_grad = False | |
return encoder | |
def create_decoder_from_config(decoder_config: Dict[str, Any]): | |
decoder_type = decoder_config.get("type", None) | |
assert decoder_type is not None, "Decoder type must be specified" | |
if decoder_type == "oobleck": | |
decoder = OobleckDecoder( | |
**decoder_config["config"] | |
) | |
elif decoder_type == "seanet": | |
from encodec.modules import SEANetDecoder | |
decoder = SEANetDecoder( | |
**decoder_config["config"] | |
) | |
elif decoder_type == "dac": | |
dac_config = decoder_config["config"] | |
decoder = DACDecoderWrapper(**dac_config) | |
elif decoder_type == "local_attn": | |
from .local_attention import TransformerDecoder1D | |
local_attn_config = decoder_config["config"] | |
decoder = TransformerDecoder1D( | |
**local_attn_config | |
) | |
else: | |
raise ValueError(f"Unknown decoder type {decoder_type}") | |
requires_grad = decoder_config.get("requires_grad", True) | |
if not requires_grad: | |
for param in decoder.parameters(): | |
param.requires_grad = False | |
return decoder | |
def create_autoencoder_from_config(config: Dict[str, Any]): | |
ae_config = config["model"] | |
encoder = create_encoder_from_config(ae_config["encoder"]) | |
decoder = create_decoder_from_config(ae_config["decoder"]) | |
bottleneck = ae_config.get("bottleneck", None) | |
latent_dim = ae_config.get("latent_dim", None) | |
assert latent_dim is not None, "latent_dim must be specified in model config" | |
downsampling_ratio = ae_config.get("downsampling_ratio", None) | |
assert downsampling_ratio is not None, "downsampling_ratio must be specified in model config" | |
io_channels = ae_config.get("io_channels", None) | |
assert io_channels is not None, "io_channels must be specified in model config" | |
sample_rate = config.get("sample_rate", None) | |
assert sample_rate is not None, "sample_rate must be specified in model config" | |
in_channels = ae_config.get("in_channels", None) | |
out_channels = ae_config.get("out_channels", None) | |
pretransform = ae_config.get("pretransform", None) | |
if pretransform is not None: | |
pretransform = create_pretransform_from_config(pretransform, sample_rate) | |
if bottleneck is not None: | |
bottleneck = create_bottleneck_from_config(bottleneck) | |
soft_clip = ae_config["decoder"].get("soft_clip", False) | |
return AudioAutoencoder( | |
encoder, | |
decoder, | |
io_channels=io_channels, | |
latent_dim=latent_dim, | |
downsampling_ratio=downsampling_ratio, | |
sample_rate=sample_rate, | |
bottleneck=bottleneck, | |
pretransform=pretransform, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
soft_clip=soft_clip | |
) |