Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from .dac import DAC | |
from .stable_vae import load_vae | |
class Autoencoder(nn.Module): | |
def __init__(self, ckpt_path, model_type='dac', quantization_first=False): | |
super(Autoencoder, self).__init__() | |
self.model_type = model_type | |
if self.model_type == 'dac': | |
model = DAC.load(ckpt_path) | |
elif self.model_type == 'stable_vae': | |
model = load_vae(ckpt_path) | |
else: | |
raise NotImplementedError(f"Model type not implemented: {self.model_type}") | |
self.ae = model.eval() | |
self.quantization_first = quantization_first | |
print(f'Autoencoder quantization first mode: {quantization_first}') | |
def forward(self, audio=None, embedding=None): | |
if self.model_type == 'dac': | |
return self.process_dac(audio, embedding) | |
elif self.model_type == 'encodec': | |
return self.process_encodec(audio, embedding) | |
elif self.model_type == 'stable_vae': | |
return self.process_stable_vae(audio, embedding) | |
else: | |
raise NotImplementedError(f"Model type not implemented: {self.model_type}") | |
def process_dac(self, audio=None, embedding=None): | |
if audio is not None: | |
z = self.ae.encoder(audio) | |
if self.quantization_first: | |
z, *_ = self.ae.quantizer(z, None) | |
return z | |
elif embedding is not None: | |
z = embedding | |
if self.quantization_first: | |
audio = self.ae.decoder(z) | |
else: | |
z, *_ = self.ae.quantizer(z, None) | |
audio = self.ae.decoder(z) | |
return audio | |
else: | |
raise ValueError("Either audio or embedding must be provided.") | |
def process_encodec(self, audio=None, embedding=None): | |
if audio is not None: | |
z = self.ae.encoder(audio) | |
if self.quantization_first: | |
code = self.ae.quantizer.encode(z) | |
z = self.ae.quantizer.decode(code) | |
return z | |
elif embedding is not None: | |
z = embedding | |
if self.quantization_first: | |
audio = self.ae.decoder(z) | |
else: | |
code = self.ae.quantizer.encode(z) | |
z = self.ae.quantizer.decode(code) | |
audio = self.ae.decoder(z) | |
return audio | |
else: | |
raise ValueError("Either audio or embedding must be provided.") | |
def process_stable_vae(self, audio=None, embedding=None): | |
if audio is not None: | |
z = self.ae.encoder(audio) | |
if self.quantization_first: | |
z = self.ae.bottleneck.encode(z) | |
return z | |
if embedding is not None: | |
z = embedding | |
if self.quantization_first: | |
audio = self.ae.decoder(z) | |
else: | |
z = self.ae.bottleneck.encode(z) | |
audio = self.ae.decoder(z) | |
return audio | |
else: | |
raise ValueError("Either audio or embedding must be provided.") | |