Spaces:
Running
on
Zero
Running
on
Zero
from transformers import HubertModel | |
import torch.nn as nn | |
import torch | |
import torch.nn.functional as F | |
import torchaudio | |
import librosa | |
class HubertModelWithFinalProj(HubertModel): | |
def __init__(self, config): | |
super().__init__(config) | |
# The final projection layer is only used for backward compatibility. | |
# Following https://github.com/auspicious3000/contentvec/issues/6 | |
# Remove this layer is necessary to achieve the desired outcome. | |
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size) | |
class VoiceConversionExtractor(nn.Module): | |
# training on the fly might be slow | |
def __init__(self, config, sr): | |
super().__init__() | |
self.encoder = HubertModelWithFinalProj.from_pretrained(config) | |
self.encoder.eval() | |
self.sr = sr | |
self.target_sr = 16000 | |
if self.sr != self.target_sr: | |
self.resampler = torchaudio.transforms.Resample(orig_freq=self.sr, | |
new_freq=self.target_sr) | |
def forward(self, audio): | |
if self.sr != self.target_sr: | |
audio = self.resampler(audio) | |
audio = F.pad(audio, ((400 - 320) // 2, (400 - 320) // 2)) | |
logits = self.encoder(audio)['last_hidden_state'] | |
return logits | |
if __name__ == '__main__': | |
model = VoiceConversionExtractor('lengyue233/content-vec-best', 24000) | |
audio, sr = librosa.load('test.wav', sr=24000) | |
audio = audio[:round(100*320*1.5)] | |
audio = torch.tensor([audio]) | |
with torch.no_grad(): | |
content = model(audio) | |
print(content.shape) |