Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import random | |
import numpy as np | |
import gradio as gr | |
import librosa | |
import spaces | |
from accelerate import Accelerator | |
from transformers import T5Tokenizer, T5EncoderModel | |
from diffusers import DDIMScheduler | |
from src.models.conditioners import MaskDiT | |
from src.models.controlnet import DiTControlNet | |
from src.models.conditions import Conditioner | |
from src.modules.autoencoder_wrapper import Autoencoder | |
from src.inference_controlnet import inference | |
from src.utils import load_yaml_with_includes | |
# Load model and configs | |
def load_models(config_name, ckpt_path, controlnet_path, vae_path, device): | |
params = load_yaml_with_includes(config_name) | |
# Load codec model | |
autoencoder = Autoencoder(ckpt_path=vae_path, | |
model_type=params['autoencoder']['name'], | |
quantization_first=params['autoencoder']['q_first']).to(device) | |
autoencoder.eval() | |
# Load text encoder | |
tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model']) | |
text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device) | |
text_encoder.eval() | |
# Load main U-Net model | |
unet = MaskDiT(**params['model']).to(device) | |
unet.load_state_dict(torch.load(ckpt_path, map_location='cpu')['model']) | |
unet.eval() | |
controlnet_config = params['model'].copy() | |
controlnet_config.update(params['controlnet']) | |
controlnet = DiTControlNet(**controlnet_config).to(device) | |
controlnet.eval() | |
controlnet.load_state_dict(torch.load(controlnet_path, map_location='cpu')['model']) | |
conditioner = Conditioner(**params['conditioner']).to(device) | |
accelerator = Accelerator(mixed_precision="fp16") | |
unet, controlnet = accelerator.prepare(unet, controlnet) | |
# Load noise scheduler | |
noise_scheduler = DDIMScheduler(**params['diff']) | |
latents = torch.randn((1, 128, 128), device=device) | |
noise = torch.randn_like(latents) | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device) | |
_ = noise_scheduler.add_noise(latents, noise, timesteps) | |
return autoencoder, unet, controlnet, conditioner, tokenizer, text_encoder, noise_scheduler, params | |
MAX_SEED = np.iinfo(np.int32).max | |
# Model and config paths | |
config_name = 'ckpts/controlnet/energy_l.yml' | |
ckpt_path = 'ckpts/s3/ezaudio_s3_l.pt' | |
controlnet_path = 'ckpts/controlnet/s3_l_energy.pt' | |
vae_path = 'ckpts/vae/1m.pt' | |
# save_path = 'output/' | |
# os.makedirs(save_path, exist_ok=True) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
(autoencoder, unet, controlnet, conditioner, | |
tokenizer, text_encoder, noise_scheduler, params) = load_models(config_name, ckpt_path, controlnet_path, vae_path, device) | |
def generate_audio(text, | |
audio_path, surpass_noise, | |
guidance_scale, guidance_rescale, | |
ddim_steps, eta, | |
conditioning_scale, | |
random_seed, randomize_seed): | |
sr = params['autoencoder']['sr'] | |
gt, _ = librosa.load(audio_path, sr=sr) | |
gt = gt / (np.max(np.abs(gt)) + 1e-9) # Normalize audio | |
if surpass_noise > 0: | |
mask = np.abs(gt) <= surpass_noise | |
gt[mask] = 0 | |
original_length = len(gt) | |
# Ensure the audio is of the correct length by padding or trimming | |
duration_seconds = len(gt) / sr | |
quantized_duration = np.ceil(duration_seconds * 2) / 2 # This rounds to the nearest 0.5 seconds | |
num_samples = int(quantized_duration * sr) | |
audio_frames = round(num_samples / sr * params['autoencoder']['latent_sr']) | |
if len(gt) < num_samples: | |
padding = num_samples - len(gt) | |
gt = np.pad(gt, (0, padding), 'constant') | |
else: | |
gt = gt[:num_samples] | |
gt_audio = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device) | |
gt = autoencoder(audio=gt_audio) | |
condition = conditioner(gt_audio.squeeze(1), gt.shape) | |
# Handle random seed | |
if randomize_seed: | |
random_seed = random.randint(0, MAX_SEED) | |
# Perform inference | |
pred = inference(autoencoder, unet, controlnet, | |
None, None, condition, | |
tokenizer, text_encoder, | |
params, noise_scheduler, | |
text, neg_text=None, | |
audio_frames=audio_frames, | |
guidance_scale=guidance_scale, guidance_rescale=guidance_rescale, | |
ddim_steps=ddim_steps, eta=eta, random_seed=random_seed, | |
conditioning_scale=conditioning_scale, device=device) | |
pred = pred.cpu().numpy().squeeze(0).squeeze(0)[:original_length] | |
return sr, pred | |
# CSS styling (optional) | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 1280px; | |
} | |
""" | |
# Gradio Blocks layout | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# EzAudio: High-quality Text-to-Audio Generator | |
Generate and edit audio from text using a diffusion transformer. Adjust advanced settings for more control. | |
[Learn more about 😈EzAudio](https://haidog-yaqub.github.io/EzAudio-Page/) | |
""") | |
with gr.Row(): | |
# Input for the text prompt (used for generating new audio) | |
text_input = gr.Textbox( | |
label="Text Prompt", | |
show_label=True, | |
max_lines=2, | |
placeholder="Describe the sound you want to generate", | |
value="A dog barking in the background", | |
scale=4 | |
) | |
# Button to generate the audio | |
generate_button = gr.Button("Generate") | |
# Audio input to use as base | |
audio_file_input = gr.Audio(label="Upload Reference Audio (less than 10s)", value='reference.mp3', type="filepath") | |
# Output Component for the generated audio | |
generated_audio_output = gr.Audio(label="Generated Audio", type="numpy") | |
with gr.Accordion("Advanced Settings", open=False): | |
# Length of the generated audio | |
surpass_noise = gr.Slider(minimum=0, maximum=0.2, step=0.01, value=0.05, label="Noise Threshold (Amplitude)") | |
guidance_scale = gr.Slider(minimum=1.0, maximum=10.0, step=0.5, value=5.0, label="Guidance Scale") | |
guidance_rescale = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.5, label="Guidance Rescale") | |
ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps") | |
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta") | |
conditioning_scale = gr.Slider(minimum=0.0, maximum=2.0, step=0.25, value=1.0, label="Conditioning Scale") | |
random_seed = gr.Slider(minimum=0, maximum=10000, step=1, value=0, label="Random Seed") | |
randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True) | |
# Link the inputs to the function | |
generate_button.click( | |
fn=generate_audio, | |
inputs=[ | |
text_input, audio_file_input, surpass_noise, guidance_scale, guidance_rescale, | |
ddim_steps, eta, conditioning_scale, random_seed, randomize_seed | |
], | |
outputs=[generated_audio_output] | |
) | |
text_input.submit( | |
fn=generate_audio, | |
inputs=[ | |
text_input, audio_file_input, surpass_noise, guidance_scale, guidance_rescale, | |
ddim_steps, eta, conditioning_scale, random_seed, randomize_seed | |
], | |
outputs=[generated_audio_output] | |
) | |
# Launch the Gradio demo | |
demo.launch(share=True) |