Spaces:
Starting
on
T4
Starting
on
T4
import random | |
import numpy as np | |
from .dataset_t2m import Text2MotionDataset | |
class Text2MotionDatasetEval(Text2MotionDataset): | |
def __init__( | |
self, | |
data_root, | |
split, | |
mean, | |
std, | |
w_vectorizer, | |
max_motion_length=196, | |
min_motion_length=40, | |
unit_length=4, | |
fps=20, | |
tmpFile=True, | |
tiny=False, | |
debug=False, | |
**kwargs, | |
): | |
super().__init__(data_root, split, mean, std, max_motion_length, | |
min_motion_length, unit_length, fps, tmpFile, tiny, | |
debug, **kwargs) | |
self.w_vectorizer = w_vectorizer | |
def __getitem__(self, item): | |
# Get text data | |
idx = self.pointer + item | |
data = self.data_dict[self.name_list[idx]] | |
motion, m_length, text_list = data["motion"], data["length"], data["text"] | |
all_captions = [ | |
' '.join([token.split('/')[0] for token in text_dic['tokens']]) | |
for text_dic in text_list | |
] | |
if len(all_captions) > 3: | |
all_captions = all_captions[:3] | |
elif len(all_captions) == 2: | |
all_captions = all_captions + all_captions[0:1] | |
elif len(all_captions) == 1: | |
all_captions = all_captions * 3 | |
# Randomly select a caption | |
text_data = random.choice(text_list) | |
caption, tokens = text_data["caption"], text_data["tokens"] | |
# Text | |
max_text_len = 20 | |
if len(tokens) < max_text_len: | |
# pad with "unk" | |
tokens = ["sos/OTHER"] + tokens + ["eos/OTHER"] | |
sent_len = len(tokens) | |
tokens = tokens + ["unk/OTHER"] * (max_text_len + 2 - sent_len) | |
else: | |
# crop | |
tokens = tokens[:max_text_len] | |
tokens = ["sos/OTHER"] + tokens + ["eos/OTHER"] | |
sent_len = len(tokens) | |
pos_one_hots = [] | |
word_embeddings = [] | |
for token in tokens: | |
word_emb, pos_oh = self.w_vectorizer[token] | |
pos_one_hots.append(pos_oh[None, :]) | |
word_embeddings.append(word_emb[None, :]) | |
pos_one_hots = np.concatenate(pos_one_hots, axis=0) | |
word_embeddings = np.concatenate(word_embeddings, axis=0) | |
# Random crop | |
if self.unit_length < 10: | |
coin2 = np.random.choice(["single", "single", "double"]) | |
else: | |
coin2 = "single" | |
if coin2 == "double": | |
m_length = (m_length // self.unit_length - 1) * self.unit_length | |
elif coin2 == "single": | |
m_length = (m_length // self.unit_length) * self.unit_length | |
idx = random.randint(0, len(motion) - m_length) | |
motion = motion[idx:idx + m_length] | |
# Z Normalization | |
motion = (motion - self.mean) / self.std | |
return caption, motion, m_length, word_embeddings, pos_one_hots, sent_len, "_".join( | |
tokens), all_captions | |