Spaces:
Running
on
T4
Running
on
T4
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mGPT.models.notused import AdaptiveInstanceNorm1d | |
class MLP(nn.Module): | |
def __init__(self, cfg, out_dim, is_init): | |
super(MLP, self).__init__() | |
dims = cfg.MODEL.MOTION_DECODER.MLP_DIM | |
n_blk = len(dims) | |
norm = 'none' | |
acti = 'lrelu' | |
layers = [] | |
for i in range(n_blk - 1): | |
layers += LinearBlock(dims[i], dims[i + 1], norm=norm, acti=acti) | |
layers += LinearBlock(dims[-1], out_dim, norm='none', acti='none') | |
self.model = nn.Sequential(*layers) | |
if is_init: | |
for m in self.modules(): | |
if isinstance(m, nn.Linear): | |
#nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
nn.init.constant_(m.weight, 1) | |
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x): | |
return self.model(x.view(x.size(0), -1)) | |
def ZeroPad1d(sizes): | |
return nn.ConstantPad1d(sizes, 0) | |
def get_acti_layer(acti='relu', inplace=True): | |
if acti == 'relu': | |
return [nn.ReLU(inplace=inplace)] | |
elif acti == 'lrelu': | |
return [nn.LeakyReLU(0.2, inplace=inplace)] | |
elif acti == 'tanh': | |
return [nn.Tanh()] | |
elif acti == 'none': | |
return [] | |
else: | |
assert 0, "Unsupported activation: {}".format(acti) | |
def get_norm_layer(norm='none', norm_dim=None): | |
if norm == 'bn': | |
return [nn.BatchNorm1d(norm_dim)] | |
elif norm == 'in': | |
# return [nn.InstanceNorm1d(norm_dim, affine=False)] # for rt42! | |
return [nn.InstanceNorm1d(norm_dim, affine=True)] | |
elif norm == 'adain': | |
return [AdaptiveInstanceNorm1d(norm_dim)] | |
elif norm == 'none': | |
return [] | |
else: | |
assert 0, "Unsupported normalization: {}".format(norm) | |
def get_dropout_layer(dropout=None): | |
if dropout is not None: | |
return [nn.Dropout(p=dropout)] | |
else: | |
return [] | |
def ConvLayers(kernel_size, | |
in_channels, | |
out_channels, | |
stride=1, | |
pad_type='reflect', | |
use_bias=True): | |
""" | |
returns a list of [pad, conv] => should be += to some list, then apply sequential | |
""" | |
if pad_type == 'reflect': | |
pad = nn.ReflectionPad1d | |
elif pad_type == 'replicate': | |
pad = nn.ReplicationPad1d | |
elif pad_type == 'zero': | |
pad = ZeroPad1d | |
else: | |
assert 0, "Unsupported padding type: {}".format(pad_type) | |
pad_l = (kernel_size - 1) // 2 | |
pad_r = kernel_size - 1 - pad_l | |
return [ | |
pad((pad_l, pad_r)), | |
nn.Conv1d(in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
bias=use_bias) | |
] | |
def ConvBlock(kernel_size, | |
in_channels, | |
out_channels, | |
stride=1, | |
pad_type='reflect', | |
dropout=None, | |
norm='none', | |
acti='lrelu', | |
acti_first=False, | |
use_bias=True, | |
inplace=True): | |
""" | |
returns a list of [pad, conv, norm, acti] or [acti, pad, conv, norm] | |
""" | |
layers = ConvLayers(kernel_size, | |
in_channels, | |
out_channels, | |
stride=stride, | |
pad_type=pad_type, | |
use_bias=use_bias) | |
layers += get_dropout_layer(dropout) | |
layers += get_norm_layer(norm, norm_dim=out_channels) | |
acti_layers = get_acti_layer(acti, inplace=inplace) | |
if acti_first: | |
return acti_layers + layers | |
else: | |
return layers + acti_layers | |
def LinearBlock(in_dim, out_dim, dropout=None, norm='none', acti='relu'): | |
use_bias = True | |
layers = [] | |
layers.append(nn.Linear(in_dim, out_dim, bias=use_bias)) | |
layers += get_dropout_layer(dropout) | |
layers += get_norm_layer(norm, norm_dim=out_dim) | |
layers += get_acti_layer(acti) | |
return layers | |