bill-jiang's picture
chore: Update SDK version to 4.36.1 and uncomment installation commands in app.py
dc39457
raw
history blame
7.91 kB
import os
import numpy as np
import torch
import logging
from pathlib import Path
from pytorch_lightning import LightningModule
from os.path import join as pjoin
from collections import OrderedDict
# from mGPT.metrics import BaseMetrics
from mGPT.config import get_obj_from_str
class BaseModel(LightningModule):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# self.configure_metrics()
# Ablation
self.test_step_outputs = []
self.times = []
self.rep_i = 0
def training_step(self, batch, batch_idx):
return self.allsplit_step("train", batch, batch_idx)
def validation_step(self, batch, batch_idx):
return self.allsplit_step("val", batch, batch_idx)
def test_step(self, batch, batch_idx):
outputs = self.allsplit_step("test", batch, batch_idx)
self.test_step_outputs.append(outputs)
return outputs
def predict_step(self, batch, batch_idx):
return self.forward(batch)
def on_train_epoch_end(self):
# Log steps and losses
dico = self.step_log_dict()
# Log losses
dico.update(self.loss_log_dict('train'))
# Write to log only if not sanity check
if not self.trainer.sanity_checking:
self.log_dict(dico, sync_dist=True, rank_zero_only=True)
def on_validation_epoch_end(self):
# Log steps and losses
dico = self.step_log_dict()
# Log losses
dico.update(self.loss_log_dict('train'))
dico.update(self.loss_log_dict('val'))
# Log metrics
dico.update(self.metrics_log_dict())
# Write to log only if not sanity check
if not self.trainer.sanity_checking:
self.log_dict(dico, sync_dist=True, rank_zero_only=True)
def on_test_epoch_end(self):
# Log metrics
dico = self.metrics_log_dict()
# Write to log only if not sanity check
if not self.trainer.sanity_checking:
self.log_dict(dico, sync_dist=True, rank_zero_only=True)
self.save_npy(self.test_step_outputs)
self.rep_i = self.rep_i + 1
# Free up the memory
self.test_step_outputs.clear()
def preprocess_state_dict(self, state_dict):
new_state_dict = OrderedDict()
# metric_state_dict = self.metrics.state_dict()
loss_state_dict = self._losses.state_dict()
# for k, v in metric_state_dict.items():
# new_state_dict['metrics.' + k] = v
for k, v in loss_state_dict.items():
new_state_dict['_losses.' + k] = v
for k, v in state_dict.items():
if '_losses' not in k and 'Metrics' not in k:
new_state_dict[k] = v
return new_state_dict
def load_state_dict(self, state_dict, strict=True):
new_state_dict = self.preprocess_state_dict(state_dict)
super().load_state_dict(new_state_dict, strict)
def step_log_dict(self):
return {
"epoch": float(self.trainer.current_epoch),
"step": float(self.trainer.current_epoch)
}
def loss_log_dict(self, split: str):
losses = self._losses['losses_' + split]
loss_dict = losses.compute(split)
return loss_dict
def metrics_log_dict(self):
# For TM2TMetrics MM
if self.trainer.datamodule.is_mm and "TM2TMetrics" in self.hparams.metrics_dict:
metrics_dicts = ['MMMetrics']
else:
metrics_dicts = self.hparams.metrics_dict
# Compute all metrics
metrics_log_dict = {}
for metric in metrics_dicts:
metrics_dict = getattr(
self.metrics,
metric).compute(sanity_flag=self.trainer.sanity_checking)
metrics_log_dict.update({
f"Metrics/{metric}": value.item()
for metric, value in metrics_dict.items()
})
return metrics_log_dict
def configure_optimizers(self):
# Optimizer
optim_target = self.hparams.cfg.TRAIN.OPTIM.target
if len(optim_target.split('.')) == 1:
optim_target = 'torch.optim.' + optim_target
optimizer = get_obj_from_str(optim_target)(
params=self.parameters(), **self.hparams.cfg.TRAIN.OPTIM.params)
# Scheduler
scheduler_target = self.hparams.cfg.TRAIN.LR_SCHEDULER.target
if len(scheduler_target.split('.')) == 1:
scheduler_target = 'torch.optim.lr_scheduler.' + scheduler_target
lr_scheduler = get_obj_from_str(scheduler_target)(
optimizer=optimizer, **self.hparams.cfg.TRAIN.LR_SCHEDULER.params)
return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler}
def configure_metrics(self):
self.metrics = BaseMetrics(datamodule=self.datamodule, **self.hparams)
def save_npy(self, outputs):
cfg = self.hparams.cfg
output_dir = Path(
os.path.join(
cfg.FOLDER,
str(cfg.model.target.split('.')[-2].lower()),
str(cfg.NAME),
"samples_" + cfg.TIME,
))
if cfg.TEST.SAVE_PREDICTIONS:
lengths = [i[1] for i in outputs]
outputs = [i[0] for i in outputs]
if cfg.TEST.DATASETS[0].lower() in ["humanml3d", "kit"]:
keyids = self.trainer.datamodule.test_dataset.name_list
for i in range(len(outputs)):
for bid in range(
min(cfg.TEST.BATCH_SIZE, outputs[i].shape[0])):
keyid = keyids[i * cfg.TEST.BATCH_SIZE + bid]
data = self.trainer.datamodule.test_dataset.data_dict[
keyid]
motion = torch.tensor(data['motion'],
device=outputs[i].device)
motion = self.datamodule.normalize(motion)
length = data['length']
text_list = data['text']
gen_joints = outputs[i][bid][:lengths[i][bid]].cpu(
).numpy()
if cfg.TEST.REPLICATION_TIMES > 1:
name = f"{keyid}.npy"
else:
name = f"{keyid}.npy"
# save predictions results
npypath = output_dir / name
np.save(npypath, gen_joints)
npypath = output_dir / f"{keyid}_gt.npy"
joints = self.feats2joints(motion).cpu().numpy()
np.save(npypath, joints)
with open(output_dir / f"{keyid}.txt", "a") as f:
for text in text_list:
f.write(f"{text['caption']}\n")
elif cfg.TEST.DATASETS[0].lower() in ["humanact12", "uestc"]:
keyids = range(len(self.trainer.datamodule.test_dataset))
for i in range(len(outputs)):
for bid in range(
min(cfg.TEST.BATCH_SIZE, outputs[i].shape[0])):
keyid = keyids[i * cfg.TEST.BATCH_SIZE + bid]
gen_joints = outputs[i][bid].cpu()
gen_joints = gen_joints.permute(2, 0,
1)[:lengths[i][bid],
...].numpy()
if cfg.TEST.REPLICATION_TIMES > 1:
name = f"{keyid}_{self.rep_i}"
else:
name = f"{keyid}.npy"
# save predictions results
npypath = output_dir / name
np.save(npypath, gen_joints)