OpenLEM / app.py
OpenLab-NLP's picture
Update app.py
0ca9e64 verified
raw
history blame
7.45 kB
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import sentencepiece as spm
import gradio as gr
import requests
import os
# ----------------------
# 파일 다운로드 유틸
# ----------------------
def download_file(url, save_path):
r = requests.get(url, stream=True)
r.raise_for_status()
with open(save_path, "wb") as f:
for chunk in r.iter_content(8192*2):
f.write(chunk)
print(f"✅ {save_path} 저장됨")
MODEL_PATH = "encoder.weights.h5"
TOKENIZER_PATH = "bpe.model"
if not os.path.exists(MODEL_PATH):
download_file(
"https://huggingface.co/OpenLab-NLP/openlem2/resolve/main/encoder_fit.weights.h5?download=true",
MODEL_PATH
)
if not os.path.exists(TOKENIZER_PATH):
download_file(
"https://huggingface.co/OpenLab-NLP/openlem2/resolve/main/bpe.model?download=true",
TOKENIZER_PATH
)
MAX_LEN = 384
EMBED_DIM = 512
LATENT_DIM = 512
DROP_RATE = 0.1
# ===============================
# 1️⃣ 토크나이저 로딩
# ===============================
sp = spm.SentencePieceProcessor(TOKENIZER_PATH)
pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0
vocab_size = sp.get_piece_size()
def encode_sentence(sentence, max_len=MAX_LEN):
return sp.encode(sentence, out_type=int)[:max_len]
def pad_sentence(tokens):
return tokens + [pad_id]*(MAX_LEN - len(tokens))
class DynamicConv(layers.Layer):
def __init__(self, d_model, k=7):
super().__init__()
assert k % 2 == 1
self.k = k
self.dense = layers.Dense(d_model, activation='silu')
self.proj = layers.Dense(d_model)
self.generator = layers.Dense(k, dtype='float32')
def call(self, x):
x_in = x
x = tf.cast(x, tf.float32)
B = tf.shape(x)[0]
L = tf.shape(x)[1]
D = tf.shape(x)[2]
kernels = self.generator(self.dense(x))
kernels = tf.nn.softmax(kernels, axis=-1)
pad = (self.k - 1) // 2
x_pad = tf.pad(x, [[0,0],[pad,pad],[0,0]])
x_pad_4d = tf.expand_dims(x_pad, axis=1)
patches = tf.image.extract_patches(
images=x_pad_4d,
sizes=[1,1,self.k,1],
strides=[1,1,1,1],
rates=[1,1,1,1],
padding='VALID'
)
patches = tf.reshape(patches, [B, L, self.k, D])
kernels_exp = tf.expand_dims(kernels, axis=-1)
out = tf.reduce_sum(patches * kernels_exp, axis=2)
out = self.proj(out)
# 🔥 원래 dtype으로 돌려줌
return tf.cast(out, x_in.dtype)
class EncoderBlock(tf.keras.layers.Layer):
def __init__(self, embed_dim=EMBED_DIM, ff_dim=1152, seq_len=MAX_LEN, num_conv_layers=2):
super().__init__()
self.embed_dim = embed_dim
self.seq_len = seq_len
# MLP / FFN
self.fc1 = layers.Dense(ff_dim)
self.fc2 = layers.Dense(embed_dim)
self.blocks = [DynamicConv(d_model=embed_dim, k=7) for _ in range(num_conv_layers)]
# LayerNorm
self.ln = layers.LayerNormalization(epsilon=1e-5) # 입력 정규화
self.ln1 = layers.LayerNormalization(epsilon=1e-5) # Conv residual
self.ln2 = layers.LayerNormalization(epsilon=1e-5) # FFN residual
def call(self, x, mask=None):
# 입력 정규화
x_norm = self.ln(x)
# DynamicConv 여러 층 통과
out = x_norm
for block in self.blocks: out = block(out)
# Conv residual 연결
x = x_norm + self.ln1(out)
# FFN / GLU
v = out
h = self.fc1(v)
g, v_split = tf.split(h, 2, axis=-1)
h = tf.nn.silu(g) * v_split
h = self.fc2(h)
# FFN residual 연결
x = x + self.ln2(h)
return x
class L2NormLayer(layers.Layer):
def __init__(self, axis=1, epsilon=1e-10, **kwargs):
super().__init__(**kwargs)
self.axis = axis
self.epsilon = epsilon
def call(self, inputs):
return tf.math.l2_normalize(inputs, axis=self.axis, epsilon=self.epsilon)
class SentenceEncoder(tf.keras.Model):
def __init__(self, vocab_size, embed_dim=EMBED_DIM, latent_dim=LATENT_DIM, max_len=MAX_LEN, pad_id=pad_id, dropout_rate=EMBED_DROPOUT):
super().__init__()
self.pad_id = pad_id
self.embed = layers.Embedding(vocab_size, embed_dim)
self.pos_embed = layers.Embedding(input_dim=max_len, output_dim=embed_dim)
self.dropout = layers.Dropout(dropout_rate)
self.blocks = [EncoderBlock() for _ in range(2)]
self.attn_pool = layers.Dense(1)
self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32)
self.latent = layers.Dense(latent_dim, activation=None)
self.l2norm = L2NormLayer(axis=1)
def call(self, x, training=None):
positions = tf.range(tf.shape(x)[1])[tf.newaxis, :]
x_embed = self.embed(x) + self.pos_embed(positions)
x_embed = self.dropout(x_embed, training=training)
mask = tf.cast(tf.not_equal(x, self.pad_id), tf.float32)
h = x_embed
for block in self.blocks:
h = block(h, training=training)
h = self.ln_f(h)
# 🔥 scores를 float32 강제
scores = self.attn_pool(h)
scores = tf.cast(scores, tf.float32)
scores = tf.where(mask[..., tf.newaxis] == 0, tf.constant(-1e9, tf.float32), scores)
scores = tf.nn.softmax(scores, axis=1)
pooled = tf.reduce_sum(h * scores, axis=1)
latent = self.latent(pooled)
latent = self.l2norm(latent)
# 🔥 출력만 float32
return tf.cast(latent, tf.float32)
# 3️⃣ 모델 로드
# ===============================
encoder = SentenceEncoder(vocab_size=vocab_size)
encoder(np.zeros((1, MAX_LEN), dtype=np.int32)) # 모델 빌드
encoder.load_weights(MODEL_PATH)
# ===============================
# 4️⃣ 벡터화 함수
# ===============================
def get_sentence_vector(sentence):
tokens = pad_sentence(encode_sentence(sentence))
vec = encoder(np.array([tokens])).numpy()[0]
return vec / np.linalg.norm(vec)
# ===============================
# 5️⃣ 가장 비슷한 문장 찾기
# ===============================
def find_most_similar(query, s1, s2, s3):
candidates = [s1, s2, s3]
candidate_vectors = np.stack([get_sentence_vector(c) for c in candidates]).astype(np.float32)
query_vector = get_sentence_vector(query)
sims = candidate_vectors @ query_vector # cosine similarity
top_idx = np.argmax(sims)
return {
"가장 비슷한 문장": candidates[top_idx],
"유사도": float(sims[top_idx])
}
# ===============================
# 6️⃣ Gradio UI
# ===============================
with gr.Blocks() as demo:
gr.Markdown("## 🔍 문장 유사도 검색기 (쿼리 1개 + 후보 3개)")
with gr.Row():
query_input = gr.Textbox(label="검색할 문장 (Query)", placeholder="여기에 입력")
with gr.Row():
s1_input = gr.Textbox(label="검색 후보 1")
s2_input = gr.Textbox(label="검색 후보 2")
s3_input = gr.Textbox(label="검색 후보 3")
output = gr.JSON(label="결과")
search_btn = gr.Button("가장 비슷한 문장 찾기")
search_btn.click(
fn=find_most_similar,
inputs=[query_input, s1_input, s2_input, s3_input],
outputs=output
)
demo.launch()