MKFMIKU's picture
A new start
596242b
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp
from einops import rearrange
def modulate(x, shift, scale):
return x * (1 + scale) + shift
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
#################################################################################
# Core DiT Model #
#################################################################################
class CausalSelfAttention(nn.Module):
def __init__(
self,
d,
H,
T,
chunk_size, # New parameter for chunk size
bias=False,
dropout=0.2,
):
"""
Arguments:
d: size of embedding dimension
H: number of attention heads
T: maximum length of input sequences (in tokens)
chunk_size: Size of chunks to divide the sequence into
bias: whether or not to use bias in linear layers
dropout: probability of dropout
"""
super().__init__()
assert d % H == 0
assert T % chunk_size == 0 # Ensure sequence length is divisible by chunk size
# Key, query, value projections
self.c_attn = nn.Linear(d, 3 * d, bias=bias)
# Projection of concatenated attention head outputs
self.c_proj = nn.Linear(d, d, bias=bias)
# Dropout modules
self.attn_dropout = nn.Dropout(dropout)
self.resid_dropout = nn.Dropout(dropout)
self.H = H
self.d = d
self.chunk_size = chunk_size
# Register buffer for the causal mask
# This mask ensures attention is only applied to the left
self.register_buffer("mask", torch.tril(torch.ones(T, T)).view(1, 1, T, T))
def forward(self, x):
B, T, _ = x.size() # Batch size, sequence length, embedding dimensionality
# Compute query, key, and value vectors for all heads in batch
# Split the output into separate query, key, and value tensors
q, k, v = self.c_attn(x).split(self.d, dim=2) # [B, T, d]
# Reshape tensor into sequences of smaller token vectors for each head
k = k.view(B, T, self.H, self.d // self.H).transpose(1, 2) # [B, H, T, d // H]
q = q.view(B, T, self.H, self.d // self.H).transpose(1, 2)
v = v.view(B, T, self.H, self.d // self.H).transpose(1, 2)
# Chunk the sequence
num_chunks = T // self.chunk_size
k_chunks = k.view(B, self.H, num_chunks, self.chunk_size, self.d // self.H)
q_chunks = q.view(B, self.H, num_chunks, self.chunk_size, self.d // self.H)
v_chunks = v.view(B, self.H, num_chunks, self.chunk_size, self.d // self.H)
# Compute attention for each chunk
att_chunks = []
for i in range(num_chunks):
# Extract the relevant chunk
k_chunk = k_chunks[:, :, i, :, :]
q_chunk = q_chunks[:, :, i, :, :]
# Compute attention within the chunk
att = (q_chunk @ k_chunk.transpose(-2, -1)) * (
1.0 / math.sqrt(k_chunk.size(-1))
) # [B, H, chunk_size, chunk_size]
# Apply the causal mask within the chunk
att = att.masked_fill(self.mask[:, :, : self.chunk_size, : self.chunk_size] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
# Store the attention for the current chunk
att_chunks.append(att)
# Concatenate the attention matrices from all chunks
att = torch.cat(att_chunks, dim=2)
# Compute output vectors for each token
y = att @ v_chunks.view(B, self.H, num_chunks * self.chunk_size, self.d // self.H) # [B, H, T, d // H]
# Concatenate outputs from each attention head and linearly project
y = y.transpose(1, 2).contiguous().view(B, T, self.d)
y = self.resid_dropout(self.c_proj(y))
return y
class DiTBlock(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
# self.attn = CausalSelfAttention(hidden_size, num_heads, qkv_bias=True, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh") # noqa: E731
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
def forward(self, x, c):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=-1)
x = x + gate_msa * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
return x
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class Model(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
out_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
learn_sigma=True,
condition_channels=2048,
):
super().__init__()
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = out_channels * 2 if learn_sigma else out_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.hidden_size = hidden_size
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size)
self.t_embedder = TimestepEmbedder(hidden_size)
self.blocks = nn.ModuleList([
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth)
])
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize (and freeze) pos_embed by sin-cos embedding:
# pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
# self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def unpatchify(self, x, h, w):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
# h = w = int(x.shape[1] ** 0.5)
# assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h // p, w // p, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h, w))
return imgs
def ckpt_wrapper(self, module):
def ckpt_forward(*inputs):
outputs = module(*inputs)
return outputs
return ckpt_forward
def forward(self, x, t, pos=None, past_frame=None, past_pos=None):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
# print("========>", t.device, t.dtype, t)
# print("<==========", x.shape, first_frame.shape, pos.shape)
# past_frame = rearrange(past_frame, "N C T H W -> N (C T) 1 H W")
# past_pos = rearrange(past_pos, "N C T H W -> N (C T) 1 H W")
x = torch.cat([x, past_frame], dim=2)
pos = torch.cat([pos, past_pos], dim=2)
T = x.size(2)
N, _, T, H, W = x.shape
x = rearrange(x, "N C T H W -> (N T) C H W")
x = self.x_embedder(x) # (N, T, D), where T = H * W / patch_size ** 2
x = rearrange(x, "(N T) Z D -> N (T Z) D", N=N)
with torch.no_grad():
pos_emb = get_nd_sincos_pos_embed_from_grid(self.hidden_size, pos).detach()
pos_emb = rearrange(pos_emb, "(N T Z) D -> N (T Z) D", N=N, T=T)
t = self.t_embedder(t) # (N, D)
c = t.unsqueeze(1).repeat(1, x.shape[1], 1) + pos_emb
for block in self.blocks:
x = torch.utils.checkpoint.checkpoint(self.ckpt_wrapper(block), x, c) # (N, T, D)
# x = block(x, c)
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
x = rearrange(x, "N (T Z) D -> (N T) Z D", T=T)
x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
x = rearrange(x, "(N T) C H W -> N C T H W", T=T)
x = torch.mean(x, dim=2, keepdim=True)
return x
''''
def forward(self, x, t, pos=None, past_frame=None, past_pos=None):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
# print("========>", t.device, t.dtype, t)
# print("<==========", x.shape, first_frame.shape, pos.shape)
past_frame = rearrange(past_frame, "N C T H W -> N (C T) 1 H W")
past_pos = rearrange(past_pos, "N C T H W -> N (C T) 1 H W")
x = torch.cat([x, past_frame], dim=1)
pos = torch.cat([pos, past_pos], dim=1)
N, _, T, H, W = x.shape
x = rearrange(x, "N C T H W -> (N T) C H W")
x = self.x_embedder(x) # (N, T, D), where T = H * W / patch_size ** 2
x = rearrange(x, "(N T) Z D -> N (T Z) D", N=N)
with torch.no_grad():
pos_emb = get_nd_sincos_pos_embed_from_grid(self.hidden_size, pos).detach()
pos_emb = rearrange(pos_emb, "(N T Z) D -> N (T Z) D", N=N, T=T)
t = self.t_embedder(t) # (N, D)
c = t.unsqueeze(1).repeat(1, x.shape[1], 1) + pos_emb
for block in self.blocks:
# x = torch.utils.checkpoint.checkpoint(self.ckpt_wrapper(block), x, c) # (N, T, D)
x = block(x, c)
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
x = rearrange(x, "N (T Z) D -> (N T) Z D", T=1)
x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
x = rearrange(x, "(N T) C H W -> N C T H W", T=1)
return x
'''
def forward_with_cfg(self, x, t, y, pos, cfg_scale):
"""
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, t, y, pos)
# For exact reproducibility reasons, we apply classifier-free guidance on only
# three channels by default. The standard approach to cfg applies it to all channels.
# This can be done by uncommenting the following line and commenting-out the line following that.
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
#################################################################################
# Sine/Cosine Positional Embedding Functions #
#################################################################################
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
def get_nd_sincos_pos_embed_from_grid(embed_dim, pos):
C = pos.size(1)
assert embed_dim % C % 2 == 0
emb = []
for i in range(C):
emb_i = get_1d_sincos_pos_embed_from_grid(embed_dim // C, pos[:, i])
emb.append(emb_i)
emb = torch.cat(emb, dim=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
omega = torch.arange(embed_dim // 2, dtype=torch.float64, device=pos.device)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = torch.sin(out) # (M, D/2)
emb_cos = torch.cos(out) # (M, D/2)
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
emb = emb.to(pos.dtype)
return emb