Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import math | |
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp | |
from einops import rearrange | |
def modulate(x, shift, scale): | |
return x * (1 + scale) + shift | |
################################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
################################################################################# | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
################################################################################# | |
# Core DiT Model # | |
################################################################################# | |
class CausalSelfAttention(nn.Module): | |
def __init__( | |
self, | |
d, | |
H, | |
T, | |
chunk_size, # New parameter for chunk size | |
bias=False, | |
dropout=0.2, | |
): | |
""" | |
Arguments: | |
d: size of embedding dimension | |
H: number of attention heads | |
T: maximum length of input sequences (in tokens) | |
chunk_size: Size of chunks to divide the sequence into | |
bias: whether or not to use bias in linear layers | |
dropout: probability of dropout | |
""" | |
super().__init__() | |
assert d % H == 0 | |
assert T % chunk_size == 0 # Ensure sequence length is divisible by chunk size | |
# Key, query, value projections | |
self.c_attn = nn.Linear(d, 3 * d, bias=bias) | |
# Projection of concatenated attention head outputs | |
self.c_proj = nn.Linear(d, d, bias=bias) | |
# Dropout modules | |
self.attn_dropout = nn.Dropout(dropout) | |
self.resid_dropout = nn.Dropout(dropout) | |
self.H = H | |
self.d = d | |
self.chunk_size = chunk_size | |
# Register buffer for the causal mask | |
# This mask ensures attention is only applied to the left | |
self.register_buffer("mask", torch.tril(torch.ones(T, T)).view(1, 1, T, T)) | |
def forward(self, x): | |
B, T, _ = x.size() # Batch size, sequence length, embedding dimensionality | |
# Compute query, key, and value vectors for all heads in batch | |
# Split the output into separate query, key, and value tensors | |
q, k, v = self.c_attn(x).split(self.d, dim=2) # [B, T, d] | |
# Reshape tensor into sequences of smaller token vectors for each head | |
k = k.view(B, T, self.H, self.d // self.H).transpose(1, 2) # [B, H, T, d // H] | |
q = q.view(B, T, self.H, self.d // self.H).transpose(1, 2) | |
v = v.view(B, T, self.H, self.d // self.H).transpose(1, 2) | |
# Chunk the sequence | |
num_chunks = T // self.chunk_size | |
k_chunks = k.view(B, self.H, num_chunks, self.chunk_size, self.d // self.H) | |
q_chunks = q.view(B, self.H, num_chunks, self.chunk_size, self.d // self.H) | |
v_chunks = v.view(B, self.H, num_chunks, self.chunk_size, self.d // self.H) | |
# Compute attention for each chunk | |
att_chunks = [] | |
for i in range(num_chunks): | |
# Extract the relevant chunk | |
k_chunk = k_chunks[:, :, i, :, :] | |
q_chunk = q_chunks[:, :, i, :, :] | |
# Compute attention within the chunk | |
att = (q_chunk @ k_chunk.transpose(-2, -1)) * ( | |
1.0 / math.sqrt(k_chunk.size(-1)) | |
) # [B, H, chunk_size, chunk_size] | |
# Apply the causal mask within the chunk | |
att = att.masked_fill(self.mask[:, :, : self.chunk_size, : self.chunk_size] == 0, float('-inf')) | |
att = F.softmax(att, dim=-1) | |
att = self.attn_dropout(att) | |
# Store the attention for the current chunk | |
att_chunks.append(att) | |
# Concatenate the attention matrices from all chunks | |
att = torch.cat(att_chunks, dim=2) | |
# Compute output vectors for each token | |
y = att @ v_chunks.view(B, self.H, num_chunks * self.chunk_size, self.d // self.H) # [B, H, T, d // H] | |
# Concatenate outputs from each attention head and linearly project | |
y = y.transpose(1, 2).contiguous().view(B, T, self.d) | |
y = self.resid_dropout(self.c_proj(y)) | |
return y | |
class DiTBlock(nn.Module): | |
""" | |
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. | |
""" | |
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): | |
super().__init__() | |
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs) | |
# self.attn = CausalSelfAttention(hidden_size, num_heads, qkv_bias=True, **block_kwargs) | |
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
approx_gelu = lambda: nn.GELU(approximate="tanh") # noqa: E731 | |
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 6 * hidden_size, bias=True) | |
) | |
def forward(self, x, c): | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=-1) | |
x = x + gate_msa * self.attn(modulate(self.norm1(x), shift_msa, scale_msa)) | |
x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) | |
return x | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of DiT. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 2 * hidden_size, bias=True) | |
) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class Model(nn.Module): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
out_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
learn_sigma=True, | |
condition_channels=2048, | |
): | |
super().__init__() | |
self.learn_sigma = learn_sigma | |
self.in_channels = in_channels | |
self.out_channels = out_channels * 2 if learn_sigma else out_channels | |
self.patch_size = patch_size | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size) | |
self.t_embedder = TimestepEmbedder(hidden_size) | |
self.blocks = nn.ModuleList([ | |
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth) | |
]) | |
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels) | |
self.initialize_weights() | |
def initialize_weights(self): | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize (and freeze) pos_embed by sin-cos embedding: | |
# pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5)) | |
# self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
w = self.x_embedder.proj.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
nn.init.constant_(self.x_embedder.proj.bias, 0) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers in DiT blocks: | |
for block in self.blocks: | |
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(self.final_layer.linear.weight, 0) | |
nn.init.constant_(self.final_layer.linear.bias, 0) | |
def unpatchify(self, x, h, w): | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.out_channels | |
p = self.x_embedder.patch_size[0] | |
# h = w = int(x.shape[1] ** 0.5) | |
# assert h * w == x.shape[1] | |
x = x.reshape(shape=(x.shape[0], h // p, w // p, p, p, c)) | |
x = torch.einsum('nhwpqc->nchpwq', x) | |
imgs = x.reshape(shape=(x.shape[0], c, h, w)) | |
return imgs | |
def ckpt_wrapper(self, module): | |
def ckpt_forward(*inputs): | |
outputs = module(*inputs) | |
return outputs | |
return ckpt_forward | |
def forward(self, x, t, pos=None, past_frame=None, past_pos=None): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# print("========>", t.device, t.dtype, t) | |
# print("<==========", x.shape, first_frame.shape, pos.shape) | |
# past_frame = rearrange(past_frame, "N C T H W -> N (C T) 1 H W") | |
# past_pos = rearrange(past_pos, "N C T H W -> N (C T) 1 H W") | |
x = torch.cat([x, past_frame], dim=2) | |
pos = torch.cat([pos, past_pos], dim=2) | |
T = x.size(2) | |
N, _, T, H, W = x.shape | |
x = rearrange(x, "N C T H W -> (N T) C H W") | |
x = self.x_embedder(x) # (N, T, D), where T = H * W / patch_size ** 2 | |
x = rearrange(x, "(N T) Z D -> N (T Z) D", N=N) | |
with torch.no_grad(): | |
pos_emb = get_nd_sincos_pos_embed_from_grid(self.hidden_size, pos).detach() | |
pos_emb = rearrange(pos_emb, "(N T Z) D -> N (T Z) D", N=N, T=T) | |
t = self.t_embedder(t) # (N, D) | |
c = t.unsqueeze(1).repeat(1, x.shape[1], 1) + pos_emb | |
for block in self.blocks: | |
x = torch.utils.checkpoint.checkpoint(self.ckpt_wrapper(block), x, c) # (N, T, D) | |
# x = block(x, c) | |
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels) | |
x = rearrange(x, "N (T Z) D -> (N T) Z D", T=T) | |
x = self.unpatchify(x, H, W) # (N, out_channels, H, W) | |
x = rearrange(x, "(N T) C H W -> N C T H W", T=T) | |
x = torch.mean(x, dim=2, keepdim=True) | |
return x | |
'''' | |
def forward(self, x, t, pos=None, past_frame=None, past_pos=None): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# print("========>", t.device, t.dtype, t) | |
# print("<==========", x.shape, first_frame.shape, pos.shape) | |
past_frame = rearrange(past_frame, "N C T H W -> N (C T) 1 H W") | |
past_pos = rearrange(past_pos, "N C T H W -> N (C T) 1 H W") | |
x = torch.cat([x, past_frame], dim=1) | |
pos = torch.cat([pos, past_pos], dim=1) | |
N, _, T, H, W = x.shape | |
x = rearrange(x, "N C T H W -> (N T) C H W") | |
x = self.x_embedder(x) # (N, T, D), where T = H * W / patch_size ** 2 | |
x = rearrange(x, "(N T) Z D -> N (T Z) D", N=N) | |
with torch.no_grad(): | |
pos_emb = get_nd_sincos_pos_embed_from_grid(self.hidden_size, pos).detach() | |
pos_emb = rearrange(pos_emb, "(N T Z) D -> N (T Z) D", N=N, T=T) | |
t = self.t_embedder(t) # (N, D) | |
c = t.unsqueeze(1).repeat(1, x.shape[1], 1) + pos_emb | |
for block in self.blocks: | |
# x = torch.utils.checkpoint.checkpoint(self.ckpt_wrapper(block), x, c) # (N, T, D) | |
x = block(x, c) | |
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels) | |
x = rearrange(x, "N (T Z) D -> (N T) Z D", T=1) | |
x = self.unpatchify(x, H, W) # (N, out_channels, H, W) | |
x = rearrange(x, "(N T) C H W -> N C T H W", T=1) | |
return x | |
''' | |
def forward_with_cfg(self, x, t, y, pos, cfg_scale): | |
""" | |
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
half = x[: len(x) // 2] | |
combined = torch.cat([half, half], dim=0) | |
model_out = self.forward(combined, t, y, pos) | |
# For exact reproducibility reasons, we apply classifier-free guidance on only | |
# three channels by default. The standard approach to cfg applies it to all channels. | |
# This can be done by uncommenting the following line and commenting-out the line following that. | |
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] | |
eps, rest = model_out[:, :3], model_out[:, 3:] | |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
eps = torch.cat([half_eps, half_eps], dim=0) | |
return torch.cat([eps, rest], dim=1) | |
################################################################################# | |
# Sine/Cosine Positional Embedding Functions # | |
################################################################################# | |
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py | |
def get_nd_sincos_pos_embed_from_grid(embed_dim, pos): | |
C = pos.size(1) | |
assert embed_dim % C % 2 == 0 | |
emb = [] | |
for i in range(C): | |
emb_i = get_1d_sincos_pos_embed_from_grid(embed_dim // C, pos[:, i]) | |
emb.append(emb_i) | |
emb = torch.cat(emb, dim=1) # (H*W, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
omega = torch.arange(embed_dim // 2, dtype=torch.float64, device=pos.device) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = torch.sin(out) # (M, D/2) | |
emb_cos = torch.cos(out) # (M, D/2) | |
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D) | |
emb = emb.to(pos.dtype) | |
return emb | |