patrickvonplaten's picture
update
b0e7256
raw
history blame
8.68 kB
import os
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from collections import Counter, defaultdict
from datasets import load_dataset
import datasets
from huggingface_hub import HfApi, list_datasets
api = HfApi(token=os.environ.get("HF_TOKEN", None))
def restart_space():
api.restart_space(repo_id="OpenGenAI/parti-prompts-leaderboard")
parti_prompt_results = []
ORG = "diffusers-parti-prompts"
SUBMISSIONS = {
"kand2": None,
"sdxl": None,
"wuerst": None,
"karlo": None,
}
LINKS = {
"kand2": "https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder",
"sdxl": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0",
"wuerst": "https://huggingface.co/warp-ai/wuerstchen",
"karlo": "https://huggingface.co/kakaobrain/karlo-v1-alpha",
}
MODEL_KEYS = "-".join(SUBMISSIONS.keys())
SUBMISSION_ORG = f"results-{MODEL_KEYS}"
submission_names = list(SUBMISSIONS.keys())
ds = load_dataset("nateraw/parti-prompts")["train"]
parti_prompt_categories = ds["Category"]
parti_prompt_challenge = ds["Challenge"]
def load_submissions():
all_datasets = list_datasets(author=SUBMISSION_ORG)
relevant_ids = [d.id for d in all_datasets]
ids = defaultdict(list)
challenges = defaultdict(list)
categories = defaultdict(list)
total_submissions = 0
for _id in relevant_ids:
try:
ds = load_dataset(_id)["train"]
except:
# skip dataset
continue
all_results = []
all_ids = []
for result, image_id in zip(ds["result"], ds["id"]):
all_result = result.split(",")
all_results += all_result
all_ids += (len(all_result) * [image_id])
for result, image_id in zip(all_results, all_ids):
if result == "":
print(f"{result} was not solved by any model.")
elif result not in submission_names:
import ipdb; ipdb.set_trace()
# Make sure that incorrect model names are not added
continue
ids[result].append(image_id)
challenges[parti_prompt_challenge[image_id]].append(result)
categories[parti_prompt_categories[image_id]].append(result)
total_submissions += 1
all_values = sum(len(v) for v in ids.values())
main_dict = {k: float('{:.2}'.format(len(v)/all_values)) for k, v in ids.items()}
challenges = {k: Counter(v) for k, v in challenges.items()}
categories = {k: Counter(v) for k, v in categories.items()}
return total_submissions, main_dict, challenges, categories
def sort_by_highest_percentage(df):
# Convert percentage values to numeric format
df = df[df.loc[0].sort_values(ascending=False).index]
return df
def get_dataframe_all():
total_submissions, main, challenges, categories = load_submissions()
main_frame = pd.DataFrame([main])
challenges_frame = pd.DataFrame.from_dict(challenges).fillna(0).T
challenges_frame = challenges_frame.div(challenges_frame.sum(axis=1), axis=0)
categories_frame = pd.DataFrame.from_dict(categories).fillna(0).T
categories_frame = categories_frame.div(categories_frame.sum(axis=1), axis=0)
main_frame = main_frame.rename(columns={"": "NOT SOLVED"})
categories_frame = categories_frame.rename(columns={"": "NOT SOLVED"})
challenges_frame = challenges_frame.rename(columns={"": "NOT SOLVED"})
main_frame = sort_by_highest_percentage(main_frame)
main_frame = main_frame.applymap(lambda x: '{:.2%}'.format(x))
challenges_frame = challenges_frame.applymap(lambda x: '{:.2%}'.format(x))
categories_frame = categories_frame.applymap(lambda x: '{:.2%}'.format(x))
categories_frame = categories_frame.reindex(columns=main_frame.columns.to_list())
challenges_frame = challenges_frame.reindex(columns=main_frame.columns.to_list())
categories_frame = categories_frame.reset_index().rename(columns={'index': 'Category'})
challenges_frame = challenges_frame.reset_index().rename(columns={'index': 'Challenge'})
return total_submissions, main_frame, challenges_frame, categories_frame
TITLE = "# Open Parti Prompts Leaderboard"
DESCRIPTION = """
The *Open Parti Prompts Leaderboard* compares state-of-the-art, open-source text-to-image models to each other according to **human preferences**. \n\n
Text-to-image models are notoriously difficult to evaluate. [FID](https://en.wikipedia.org/wiki/Fr%C3%A9chet_inception_distance) and
[CLIP Score](https://en.wikipedia.org/wiki/Fr%C3%A9chet_inception_distance) are not enough to accurately state whether a text-to-image model can
**generate "good" images**. "Good" is extremely difficult to put into numbers. \n\n
Instead, the **Open Parti Prompts Leaderboard** uses human feedback from the community to compare images from different text-to-image models to each other.
\n\n
❀️ ***Please take 3 minutes to contribute to the benchmark.*** \n
πŸ‘‰ ***Play one round of [Open Parti Prompts Game](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts) to contribute 10 answers.*** πŸ€—
"""
EXPLANATION = """\n\n
## How the is data collected πŸ“Š \n\n
In more detail, the [Open Parti Prompts Game](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts) collects human preferences that state which generated image
best fits a given prompt from the [Parti Prompts](https://huggingface.co/datasets/nateraw/parti-prompts) dataset. Parti Prompts has been designed to challenge
text-to-image models on prompts of varying categories and difficulty. The images have been pre-generated from the models that are compared in this space.
For more information of how the images were created, please refer to [Open Parti Prompts](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts).
The community's answers are then stored and used in this space to give a human-preference-based comparison of the different models. \n\n
Currently the leaderboard includes the following models:
- [kand2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder),
- [sdxl](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0),
- [wuerst](https://huggingface.co/warp-ai/wuerstchen),
- [karlo](https://huggingface.co/kakaobrain/karlo-v1-alpha),
In the following you can see three result tables. The first shows the overall comparison of the 4 models. The score states,
**the percentage at which images generated from the corresponding model are preferred over the image from all other models**. The second and third tables
show you a breakdown analysis per category and per type of challenge as defined by [Parti Prompts](https://huggingface.co/datasets/nateraw/parti-prompts).
"""
GALLERY_COLUMN_NUM = len(SUBMISSIONS)
def refresh():
return get_dataframe_all()
with gr.Blocks() as demo:
with gr.Column(visible=True) as intro_view:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
gr.Markdown(EXPLANATION)
headers = list(SUBMISSIONS.keys())
datatype = "str"
total_submissions, main_df, challenge_df, category_df = get_dataframe_all()
with gr.Column():
gr.Markdown("# Open Parti Prompts")
main_dataframe = gr.Dataframe(
value=main_df,
headers=main_df.columns.to_list(),
datatype="str",
row_count=main_df.shape[0],
col_count=main_df.shape[1],
interactive=False,
)
with gr.Column():
gr.Markdown("## per category")
cat_dataframe = gr.Dataframe(
value=category_df,
headers=category_df.columns.to_list(),
datatype="str",
row_count=category_df.shape[0],
col_count=category_df.shape[1],
interactive=False,
)
with gr.Column():
gr.Markdown("## per challenge")
chal_dataframe = gr.Dataframe(
value=challenge_df,
headers=challenge_df.columns.to_list(),
datatype="str",
row_count=challenge_df.shape[0],
col_count=challenge_df.shape[1],
interactive=False,
)
with gr.Column():
gr.Markdown("## # Submissions")
num_submissions = gr.Number(value=total_submissions, interactive=False)
with gr.Row():
refresh_button = gr.Button("Refresh")
refresh_button.click(refresh, inputs=[], outputs=[num_submissions, main_dataframe, cat_dataframe, chal_dataframe])
# Restart space every 20 minutes
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, 'interval', seconds=3600)
scheduler.start()
demo.launch()