Spaces:
Running
on
Zero
Running
on
Zero
import torchvision | |
import random | |
from PIL import Image, ImageOps | |
import numpy as np | |
import numbers | |
import math | |
import torch | |
class GroupRandomCrop(object): | |
def __init__(self, size): | |
if isinstance(size, numbers.Number): | |
self.size = (int(size), int(size)) | |
else: | |
self.size = size | |
def __call__(self, img_group): | |
w, h = img_group[0].size | |
th, tw = self.size | |
out_images = list() | |
x1 = random.randint(0, w - tw) | |
y1 = random.randint(0, h - th) | |
for img in img_group: | |
assert(img.size[0] == w and img.size[1] == h) | |
if w == tw and h == th: | |
out_images.append(img) | |
else: | |
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th))) | |
return out_images | |
class MultiGroupRandomCrop(object): | |
def __init__(self, size, groups=1): | |
if isinstance(size, numbers.Number): | |
self.size = (int(size), int(size)) | |
else: | |
self.size = size | |
self.groups = groups | |
def __call__(self, img_group): | |
w, h = img_group[0].size | |
th, tw = self.size | |
out_images = list() | |
for i in range(self.groups): | |
x1 = random.randint(0, w - tw) | |
y1 = random.randint(0, h - th) | |
for img in img_group: | |
assert(img.size[0] == w and img.size[1] == h) | |
if w == tw and h == th: | |
out_images.append(img) | |
else: | |
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th))) | |
return out_images | |
class GroupCenterCrop(object): | |
def __init__(self, size): | |
self.worker = torchvision.transforms.CenterCrop(size) | |
def __call__(self, img_group): | |
return [self.worker(img) for img in img_group] | |
class GroupRandomHorizontalFlip(object): | |
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5 | |
""" | |
def __init__(self, is_flow=False): | |
self.is_flow = is_flow | |
def __call__(self, img_group, is_flow=False): | |
v = random.random() | |
if v < 0.5: | |
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group] | |
if self.is_flow: | |
for i in range(0, len(ret), 2): | |
# invert flow pixel values when flipping | |
ret[i] = ImageOps.invert(ret[i]) | |
return ret | |
else: | |
return img_group | |
class GroupNormalize(object): | |
def __init__(self, mean, std): | |
self.mean = mean | |
self.std = std | |
def __call__(self, tensor): | |
rep_mean = self.mean * (tensor.size()[0] // len(self.mean)) | |
rep_std = self.std * (tensor.size()[0] // len(self.std)) | |
# TODO: make efficient | |
for t, m, s in zip(tensor, rep_mean, rep_std): | |
t.sub_(m).div_(s) | |
return tensor | |
class GroupScale(object): | |
""" Rescales the input PIL.Image to the given 'size'. | |
'size' will be the size of the smaller edge. | |
For example, if height > width, then image will be | |
rescaled to (size * height / width, size) | |
size: size of the smaller edge | |
interpolation: Default: PIL.Image.BILINEAR | |
""" | |
def __init__(self, size, interpolation=Image.BILINEAR): | |
self.worker = torchvision.transforms.Resize(size, interpolation) | |
def __call__(self, img_group): | |
return [self.worker(img) for img in img_group] | |
class GroupOverSample(object): | |
def __init__(self, crop_size, scale_size=None, flip=True): | |
self.crop_size = crop_size if not isinstance( | |
crop_size, int) else (crop_size, crop_size) | |
if scale_size is not None: | |
self.scale_worker = GroupScale(scale_size) | |
else: | |
self.scale_worker = None | |
self.flip = flip | |
def __call__(self, img_group): | |
if self.scale_worker is not None: | |
img_group = self.scale_worker(img_group) | |
image_w, image_h = img_group[0].size | |
crop_w, crop_h = self.crop_size | |
offsets = GroupMultiScaleCrop.fill_fix_offset( | |
False, image_w, image_h, crop_w, crop_h) | |
oversample_group = list() | |
for o_w, o_h in offsets: | |
normal_group = list() | |
flip_group = list() | |
for i, img in enumerate(img_group): | |
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h)) | |
normal_group.append(crop) | |
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT) | |
if img.mode == 'L' and i % 2 == 0: | |
flip_group.append(ImageOps.invert(flip_crop)) | |
else: | |
flip_group.append(flip_crop) | |
oversample_group.extend(normal_group) | |
if self.flip: | |
oversample_group.extend(flip_group) | |
return oversample_group | |
class GroupFullResSample(object): | |
def __init__(self, crop_size, scale_size=None, flip=True): | |
self.crop_size = crop_size if not isinstance( | |
crop_size, int) else (crop_size, crop_size) | |
if scale_size is not None: | |
self.scale_worker = GroupScale(scale_size) | |
else: | |
self.scale_worker = None | |
self.flip = flip | |
def __call__(self, img_group): | |
if self.scale_worker is not None: | |
img_group = self.scale_worker(img_group) | |
image_w, image_h = img_group[0].size | |
crop_w, crop_h = self.crop_size | |
w_step = (image_w - crop_w) // 4 | |
h_step = (image_h - crop_h) // 4 | |
offsets = list() | |
offsets.append((0 * w_step, 2 * h_step)) # left | |
offsets.append((4 * w_step, 2 * h_step)) # right | |
offsets.append((2 * w_step, 2 * h_step)) # center | |
oversample_group = list() | |
for o_w, o_h in offsets: | |
normal_group = list() | |
flip_group = list() | |
for i, img in enumerate(img_group): | |
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h)) | |
normal_group.append(crop) | |
if self.flip: | |
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT) | |
if img.mode == 'L' and i % 2 == 0: | |
flip_group.append(ImageOps.invert(flip_crop)) | |
else: | |
flip_group.append(flip_crop) | |
oversample_group.extend(normal_group) | |
oversample_group.extend(flip_group) | |
return oversample_group | |
class GroupMultiScaleCrop(object): | |
def __init__(self, input_size, scales=None, max_distort=1, | |
fix_crop=True, more_fix_crop=True): | |
self.scales = scales if scales is not None else [1, .875, .75, .66] | |
self.max_distort = max_distort | |
self.fix_crop = fix_crop | |
self.more_fix_crop = more_fix_crop | |
self.input_size = input_size if not isinstance(input_size, int) else [ | |
input_size, input_size] | |
self.interpolation = Image.BILINEAR | |
def __call__(self, img_group): | |
im_size = img_group[0].size | |
crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size) | |
crop_img_group = [ | |
img.crop( | |
(offset_w, | |
offset_h, | |
offset_w + | |
crop_w, | |
offset_h + | |
crop_h)) for img in img_group] | |
ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation) | |
for img in crop_img_group] | |
return ret_img_group | |
def _sample_crop_size(self, im_size): | |
image_w, image_h = im_size[0], im_size[1] | |
# find a crop size | |
base_size = min(image_w, image_h) | |
crop_sizes = [int(base_size * x) for x in self.scales] | |
crop_h = [ | |
self.input_size[1] if abs( | |
x - self.input_size[1]) < 3 else x for x in crop_sizes] | |
crop_w = [ | |
self.input_size[0] if abs( | |
x - self.input_size[0]) < 3 else x for x in crop_sizes] | |
pairs = [] | |
for i, h in enumerate(crop_h): | |
for j, w in enumerate(crop_w): | |
if abs(i - j) <= self.max_distort: | |
pairs.append((w, h)) | |
crop_pair = random.choice(pairs) | |
if not self.fix_crop: | |
w_offset = random.randint(0, image_w - crop_pair[0]) | |
h_offset = random.randint(0, image_h - crop_pair[1]) | |
else: | |
w_offset, h_offset = self._sample_fix_offset( | |
image_w, image_h, crop_pair[0], crop_pair[1]) | |
return crop_pair[0], crop_pair[1], w_offset, h_offset | |
def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h): | |
offsets = self.fill_fix_offset( | |
self.more_fix_crop, image_w, image_h, crop_w, crop_h) | |
return random.choice(offsets) | |
def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h): | |
w_step = (image_w - crop_w) // 4 | |
h_step = (image_h - crop_h) // 4 | |
ret = list() | |
ret.append((0, 0)) # upper left | |
ret.append((4 * w_step, 0)) # upper right | |
ret.append((0, 4 * h_step)) # lower left | |
ret.append((4 * w_step, 4 * h_step)) # lower right | |
ret.append((2 * w_step, 2 * h_step)) # center | |
if more_fix_crop: | |
ret.append((0, 2 * h_step)) # center left | |
ret.append((4 * w_step, 2 * h_step)) # center right | |
ret.append((2 * w_step, 4 * h_step)) # lower center | |
ret.append((2 * w_step, 0 * h_step)) # upper center | |
ret.append((1 * w_step, 1 * h_step)) # upper left quarter | |
ret.append((3 * w_step, 1 * h_step)) # upper right quarter | |
ret.append((1 * w_step, 3 * h_step)) # lower left quarter | |
ret.append((3 * w_step, 3 * h_step)) # lower righ quarter | |
return ret | |
class GroupRandomSizedCrop(object): | |
"""Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size | |
and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio | |
This is popularly used to train the Inception networks | |
size: size of the smaller edge | |
interpolation: Default: PIL.Image.BILINEAR | |
""" | |
def __init__(self, size, interpolation=Image.BILINEAR): | |
self.size = size | |
self.interpolation = interpolation | |
def __call__(self, img_group): | |
for attempt in range(10): | |
area = img_group[0].size[0] * img_group[0].size[1] | |
target_area = random.uniform(0.08, 1.0) * area | |
aspect_ratio = random.uniform(3. / 4, 4. / 3) | |
w = int(round(math.sqrt(target_area * aspect_ratio))) | |
h = int(round(math.sqrt(target_area / aspect_ratio))) | |
if random.random() < 0.5: | |
w, h = h, w | |
if w <= img_group[0].size[0] and h <= img_group[0].size[1]: | |
x1 = random.randint(0, img_group[0].size[0] - w) | |
y1 = random.randint(0, img_group[0].size[1] - h) | |
found = True | |
break | |
else: | |
found = False | |
x1 = 0 | |
y1 = 0 | |
if found: | |
out_group = list() | |
for img in img_group: | |
img = img.crop((x1, y1, x1 + w, y1 + h)) | |
assert(img.size == (w, h)) | |
out_group.append( | |
img.resize( | |
(self.size, self.size), self.interpolation)) | |
return out_group | |
else: | |
# Fallback | |
scale = GroupScale(self.size, interpolation=self.interpolation) | |
crop = GroupRandomCrop(self.size) | |
return crop(scale(img_group)) | |
class ConvertDataFormat(object): | |
def __init__(self, model_type): | |
self.model_type = model_type | |
def __call__(self, images): | |
if self.model_type == '2D': | |
return images | |
tc, h, w = images.size() | |
t = tc // 3 | |
images = images.view(t, 3, h, w) | |
images = images.permute(1, 0, 2, 3) | |
return images | |
class Stack(object): | |
def __init__(self, roll=False): | |
self.roll = roll | |
def __call__(self, img_group): | |
if img_group[0].mode == 'L': | |
return np.concatenate([np.expand_dims(x, 2) | |
for x in img_group], axis=2) | |
elif img_group[0].mode == 'RGB': | |
if self.roll: | |
return np.concatenate([np.array(x)[:, :, ::-1] | |
for x in img_group], axis=2) | |
else: | |
#print(np.concatenate(img_group, axis=2).shape) | |
# print(img_group[0].shape) | |
return np.concatenate(img_group, axis=2) | |
class ToTorchFormatTensor(object): | |
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255] | |
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """ | |
def __init__(self, div=True): | |
self.div = div | |
def __call__(self, pic): | |
if isinstance(pic, np.ndarray): | |
# handle numpy array | |
img = torch.from_numpy(pic).permute(2, 0, 1).contiguous() | |
else: | |
# handle PIL Image | |
img = torch.ByteTensor( | |
torch.ByteStorage.from_buffer( | |
pic.tobytes())) | |
img = img.view(pic.size[1], pic.size[0], len(pic.mode)) | |
# put it from HWC to CHW format | |
# yikes, this transpose takes 80% of the loading time/CPU | |
img = img.transpose(0, 1).transpose(0, 2).contiguous() | |
return img.float().div(255) if self.div else img.float() | |
class IdentityTransform(object): | |
def __call__(self, data): | |
return data | |
if __name__ == "__main__": | |
trans = torchvision.transforms.Compose([ | |
GroupScale(256), | |
GroupRandomCrop(224), | |
Stack(), | |
ToTorchFormatTensor(), | |
GroupNormalize( | |
mean=[.485, .456, .406], | |
std=[.229, .224, .225] | |
)] | |
) | |
im = Image.open('../tensorflow-model-zoo.torch/lena_299.png') | |
color_group = [im] * 3 | |
rst = trans(color_group) | |
gray_group = [im.convert('L')] * 9 | |
gray_rst = trans(gray_group) | |
trans2 = torchvision.transforms.Compose([ | |
GroupRandomSizedCrop(256), | |
Stack(), | |
ToTorchFormatTensor(), | |
GroupNormalize( | |
mean=[.485, .456, .406], | |
std=[.229, .224, .225]) | |
]) | |
print(trans2(color_group)) | |