Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2015-present, Facebook, Inc. | |
# All rights reserved. | |
import os | |
import torch | |
import torch.nn as nn | |
from functools import partial | |
from torch import Tensor | |
from typing import Optional | |
import torch.utils.checkpoint as checkpoint | |
from einops import rearrange | |
from timm.models.vision_transformer import _cfg | |
from timm.models.layers import trunc_normal_ | |
from timm.models.layers import DropPath, to_2tuple | |
from timm.models.vision_transformer import _load_weights | |
import math | |
from mamba_ssm.modules.mamba_simple import Mamba | |
try: | |
from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn | |
except ImportError: | |
RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None | |
class Block(nn.Module): | |
def __init__( | |
self, dim, mixer_cls, norm_cls=nn.LayerNorm, fused_add_norm=False, residual_in_fp32=False,drop_path=0., | |
): | |
""" | |
Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection" | |
This Block has a slightly different structure compared to a regular | |
prenorm Transformer block. | |
The standard block is: LN -> MHA/MLP -> Add. | |
[Ref: https://arxiv.org/abs/2002.04745] | |
Here we have: Add -> LN -> Mixer, returning both | |
the hidden_states (output of the mixer) and the residual. | |
This is purely for performance reasons, as we can fuse add and LayerNorm. | |
The residual needs to be provided (except for the very first block). | |
""" | |
super().__init__() | |
self.residual_in_fp32 = residual_in_fp32 | |
self.fused_add_norm = fused_add_norm | |
self.mixer = mixer_cls(dim) | |
self.norm = norm_cls(dim) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
if self.fused_add_norm: | |
assert RMSNorm is not None, "RMSNorm import fails" | |
assert isinstance( | |
self.norm, (nn.LayerNorm, RMSNorm) | |
), "Only LayerNorm and RMSNorm are supported for fused_add_norm" | |
def forward( | |
self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None, | |
use_checkpoint=False | |
): | |
r"""Pass the input through the encoder layer. | |
Args: | |
hidden_states: the sequence to the encoder layer (required). | |
residual: hidden_states = Mixer(LN(residual)) | |
""" | |
if not self.fused_add_norm: | |
residual = (residual + self.drop_path(hidden_states)) if residual is not None else hidden_states | |
hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype)) | |
if self.residual_in_fp32: | |
residual = residual.to(torch.float32) | |
else: | |
fused_add_norm_fn = rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn | |
hidden_states, residual = fused_add_norm_fn( | |
hidden_states if residual is None else self.drop_path(hidden_states), | |
self.norm.weight, | |
self.norm.bias, | |
residual=residual, | |
prenorm=True, | |
residual_in_fp32=self.residual_in_fp32, | |
eps=self.norm.eps, | |
) | |
if use_checkpoint: | |
hidden_states = checkpoint.checkpoint(self.mixer, hidden_states, inference_params) | |
else: | |
hidden_states = self.mixer(hidden_states, inference_params=inference_params) | |
return hidden_states, residual | |
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): | |
return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs) | |
def create_block( | |
d_model, | |
ssm_cfg=None, | |
norm_epsilon=1e-5, | |
drop_path=0., | |
rms_norm=True, | |
residual_in_fp32=True, | |
fused_add_norm=True, | |
layer_idx=None, | |
bimamba=True, | |
device=None, | |
dtype=None, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
if ssm_cfg is None: | |
ssm_cfg = {} | |
mixer_cls = partial(Mamba, layer_idx=layer_idx, bimamba=bimamba, **ssm_cfg, **factory_kwargs) | |
norm_cls = partial(nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon) | |
block = Block( | |
d_model, | |
mixer_cls, | |
norm_cls=norm_cls, | |
drop_path=drop_path, | |
fused_add_norm=fused_add_norm, | |
residual_in_fp32=residual_in_fp32, | |
) | |
block.layer_idx = layer_idx | |
return block | |
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454 | |
def _init_weights( | |
module, | |
n_layer, | |
initializer_range=0.02, # Now only used for embedding layer. | |
rescale_prenorm_residual=True, | |
n_residuals_per_layer=1, # Change to 2 if we have MLP | |
): | |
if isinstance(module, nn.Linear): | |
if module.bias is not None: | |
if not getattr(module.bias, "_no_reinit", False): | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
nn.init.normal_(module.weight, std=initializer_range) | |
if rescale_prenorm_residual: | |
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: | |
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale | |
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. | |
# > -- GPT-2 :: https://openai.com/blog/better-language-models/ | |
# | |
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py | |
for name, p in module.named_parameters(): | |
if name in ["out_proj.weight", "fc2.weight"]: | |
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block | |
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer) | |
# We need to reinit p since this code could be called multiple times | |
# Having just p *= scale would repeatedly scale it down | |
nn.init.kaiming_uniform_(p, a=math.sqrt(5)) | |
with torch.no_grad(): | |
p /= math.sqrt(n_residuals_per_layer * n_layer) | |
def segm_init_weights(m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, kernel_size=1, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.tubelet_size = kernel_size | |
self.proj = nn.Conv3d( | |
in_chans, embed_dim, | |
kernel_size=(kernel_size, patch_size[0], patch_size[1]), | |
stride=(kernel_size, patch_size[0], patch_size[1]) | |
) | |
def forward(self, x): | |
x = self.proj(x) | |
return x | |
class VisionMamba(nn.Module): | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
depth=24, | |
embed_dim=192, | |
channels=3, | |
num_classes=1000, | |
drop_rate=0., | |
drop_path_rate=0.1, | |
ssm_cfg=None, | |
norm_epsilon=1e-5, | |
initializer_cfg=None, | |
fused_add_norm=True, | |
rms_norm=True, | |
residual_in_fp32=True, | |
bimamba=True, | |
# video | |
kernel_size=1, | |
num_frames=8, | |
fc_drop_rate=0., | |
device=None, | |
dtype=None, | |
# checkpoint | |
use_checkpoint=False, | |
checkpoint_num=0, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} # follow MambaLMHeadModel | |
super().__init__() | |
self.residual_in_fp32 = residual_in_fp32 | |
self.fused_add_norm = fused_add_norm | |
self.use_checkpoint = use_checkpoint | |
self.checkpoint_num = checkpoint_num | |
print(f'Use checkpoint: {use_checkpoint}') | |
print(f'Checkpoint number: {checkpoint_num}') | |
# pretrain parameters | |
self.num_classes = num_classes | |
self.d_model = self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, | |
kernel_size=kernel_size, | |
in_chans=channels, embed_dim=embed_dim | |
) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, self.embed_dim)) | |
self.temporal_pos_embedding = nn.Parameter(torch.zeros(1, num_frames // kernel_size, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
self.head_drop = nn.Dropout(fc_drop_rate) if fc_drop_rate > 0 else nn.Identity() | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
inter_dpr = [0.0] + dpr | |
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
# mamba blocks | |
self.layers = nn.ModuleList( | |
[ | |
create_block( | |
embed_dim, | |
ssm_cfg=ssm_cfg, | |
norm_epsilon=norm_epsilon, | |
rms_norm=rms_norm, | |
residual_in_fp32=residual_in_fp32, | |
fused_add_norm=fused_add_norm, | |
layer_idx=i, | |
bimamba=bimamba, | |
drop_path=inter_dpr[i], | |
**factory_kwargs, | |
) | |
for i in range(depth) | |
] | |
) | |
# output head | |
self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)(embed_dim, eps=norm_epsilon, **factory_kwargs) | |
# original init | |
self.apply(segm_init_weights) | |
self.head.apply(segm_init_weights) | |
trunc_normal_(self.pos_embed, std=.02) | |
# mamba init | |
self.apply( | |
partial( | |
_init_weights, | |
n_layer=depth, | |
**(initializer_cfg if initializer_cfg is not None else {}), | |
) | |
) | |
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): | |
return { | |
i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs) | |
for i, layer in enumerate(self.layers) | |
} | |
def no_weight_decay(self): | |
return {"pos_embed", "cls_token", "temporal_pos_embedding"} | |
def get_num_layers(self): | |
return len(self.layers) | |
def load_pretrained(self, checkpoint_path, prefix=""): | |
_load_weights(self, checkpoint_path, prefix) | |
def forward_features(self, x, inference_params=None): | |
x = self.patch_embed(x) | |
B, C, T, H, W = x.shape | |
x = x.permute(0, 2, 3, 4, 1).reshape(B * T, H * W, C) | |
cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_token, x), dim=1) | |
x = x + self.pos_embed | |
# temporal pos | |
cls_tokens = x[:B, :1, :] | |
x = x[:, 1:] | |
x = rearrange(x, '(b t) n m -> (b n) t m', b=B, t=T) | |
x = x + self.temporal_pos_embedding | |
x = rearrange(x, '(b n) t m -> b (t n) m', b=B, t=T) | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = self.pos_drop(x) | |
# mamba impl | |
residual = None | |
hidden_states = x | |
for idx, layer in enumerate(self.layers): | |
if self.use_checkpoint and idx < self.checkpoint_num: | |
hidden_states, residual = layer( | |
hidden_states, residual, inference_params=inference_params, | |
use_checkpoint=True | |
) | |
else: | |
hidden_states, residual = layer( | |
hidden_states, residual, inference_params=inference_params | |
) | |
if not self.fused_add_norm: | |
if residual is None: | |
residual = hidden_states | |
else: | |
residual = residual + self.drop_path(hidden_states) | |
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype)) | |
else: | |
# Set prenorm=False here since we don't need the residual | |
fused_add_norm_fn = rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn | |
hidden_states = fused_add_norm_fn( | |
self.drop_path(hidden_states), | |
self.norm_f.weight, | |
self.norm_f.bias, | |
eps=self.norm_f.eps, | |
residual=residual, | |
prenorm=False, | |
residual_in_fp32=self.residual_in_fp32, | |
) | |
# return only cls token | |
return hidden_states[:, 0, :] | |
def forward(self, x, inference_params=None): | |
x = self.forward_features(x, inference_params) | |
x = self.head(self.head_drop(x)) | |
return x | |
def inflate_weight(weight_2d, time_dim, center=True): | |
print(f'Init center: {center}') | |
if center: | |
weight_3d = torch.zeros(*weight_2d.shape) | |
weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) | |
middle_idx = time_dim // 2 | |
weight_3d[:, :, middle_idx, :, :] = weight_2d | |
else: | |
weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) | |
weight_3d = weight_3d / time_dim | |
return weight_3d | |
def load_state_dict(model, state_dict, center=True): | |
state_dict_3d = model.state_dict() | |
for k in state_dict.keys(): | |
if k in state_dict_3d.keys() and state_dict[k].shape != state_dict_3d[k].shape: | |
if len(state_dict_3d[k].shape) <= 3: | |
print(f'Ignore: {k}') | |
continue | |
print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}') | |
time_dim = state_dict_3d[k].shape[2] | |
state_dict[k] = inflate_weight(state_dict[k], time_dim, center=center) | |
del state_dict['head.weight'] | |
del state_dict['head.bias'] | |
msg = model.load_state_dict(state_dict, strict=False) | |
print(msg) | |
def videomamba_tiny(**kwargs): | |
model = VisionMamba( | |
patch_size=16, | |
embed_dim=192, | |
depth=24, | |
rms_norm=True, | |
residual_in_fp32=True, | |
fused_add_norm=True, | |
**kwargs | |
) | |
model.default_cfg = _cfg() | |
return model | |
def videomamba_small(**kwargs): | |
model = VisionMamba( | |
patch_size=16, | |
embed_dim=384, | |
depth=24, | |
rms_norm=True, | |
residual_in_fp32=True, | |
fused_add_norm=True, | |
**kwargs | |
) | |
model.default_cfg = _cfg() | |
return model | |
def videomamba_middle(**kwargs): | |
model = VisionMamba( | |
patch_size=16, | |
embed_dim=576, | |
depth=32, | |
rms_norm=True, | |
residual_in_fp32=True, | |
fused_add_norm=True, | |
**kwargs | |
) | |
return model | |