InternGPT / iGPT /models /grit_src /grit /data /custom_dataset_mapper.py
laizeqiang
update
ee25e9d
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Modified by Jialian Wu from https://github.com/facebookresearch/Detic/blob/main/detic/data/custom_dataset_mapper.py
import copy
import numpy as np
import torch
from detectron2.config import configurable
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.data.dataset_mapper import DatasetMapper
from .custom_build_augmentation import build_custom_augmentation
from itertools import compress
import logging
__all__ = ["CustomDatasetMapper", "ObjDescription"]
logger = logging.getLogger(__name__)
class CustomDatasetMapper(DatasetMapper):
@configurable
def __init__(self, is_train: bool,
dataset_augs=[],
**kwargs):
if is_train:
self.dataset_augs = [T.AugmentationList(x) for x in dataset_augs]
super().__init__(is_train, **kwargs)
@classmethod
def from_config(cls, cfg, is_train: bool = True):
ret = super().from_config(cfg, is_train)
if is_train:
if cfg.INPUT.CUSTOM_AUG == 'EfficientDetResizeCrop':
dataset_scales = cfg.DATALOADER.DATASET_INPUT_SCALE
dataset_sizes = cfg.DATALOADER.DATASET_INPUT_SIZE
ret['dataset_augs'] = [
build_custom_augmentation(cfg, True, scale, size) \
for scale, size in zip(dataset_scales, dataset_sizes)]
else:
assert cfg.INPUT.CUSTOM_AUG == 'ResizeShortestEdge'
min_sizes = cfg.DATALOADER.DATASET_MIN_SIZES
max_sizes = cfg.DATALOADER.DATASET_MAX_SIZES
ret['dataset_augs'] = [
build_custom_augmentation(
cfg, True, min_size=mi, max_size=ma) \
for mi, ma in zip(min_sizes, max_sizes)]
else:
ret['dataset_augs'] = []
return ret
def __call__(self, dataset_dict):
dataset_dict_out = self.prepare_data(dataset_dict)
# When augmented image is too small, do re-augmentation
retry = 0
while (dataset_dict_out["image"].shape[1] < 32 or dataset_dict_out["image"].shape[2] < 32):
retry += 1
if retry == 100:
logger.info('Retry 100 times for augmentation. Make sure the image size is not too small.')
logger.info('Find image information below')
logger.info(dataset_dict)
dataset_dict_out = self.prepare_data(dataset_dict)
return dataset_dict_out
def prepare_data(self, dataset_dict_in):
dataset_dict = copy.deepcopy(dataset_dict_in)
if 'file_name' in dataset_dict:
ori_image = utils.read_image(
dataset_dict["file_name"], format=self.image_format)
else:
ori_image, _, _ = self.tar_dataset[dataset_dict["tar_index"]]
ori_image = utils._apply_exif_orientation(ori_image)
ori_image = utils.convert_PIL_to_numpy(ori_image, self.image_format)
utils.check_image_size(dataset_dict, ori_image)
aug_input = T.AugInput(copy.deepcopy(ori_image), sem_seg=None)
if self.is_train:
transforms = \
self.dataset_augs[dataset_dict['dataset_source']](aug_input)
else:
transforms = self.augmentations(aug_input)
image, sem_seg_gt = aug_input.image, aug_input.sem_seg
image_shape = image.shape[:2]
dataset_dict["image"] = torch.as_tensor(
np.ascontiguousarray(image.transpose(2, 0, 1)))
if not self.is_train:
# USER: Modify this if you want to keep them for some reason.
dataset_dict.pop("annotations", None)
return dataset_dict
if "annotations" in dataset_dict:
if len(dataset_dict["annotations"]) > 0:
object_descriptions = [an['object_description'] for an in dataset_dict["annotations"]]
else:
object_descriptions = []
# USER: Modify this if you want to keep them for some reason.
for anno in dataset_dict["annotations"]:
if not self.use_instance_mask:
anno.pop("segmentation", None)
if not self.use_keypoint:
anno.pop("keypoints", None)
all_annos = [
(utils.transform_instance_annotations(
obj, transforms, image_shape,
keypoint_hflip_indices=self.keypoint_hflip_indices,
), obj.get("iscrowd", 0))
for obj in dataset_dict.pop("annotations")
]
annos = [ann[0] for ann in all_annos if ann[1] == 0]
instances = utils.annotations_to_instances(
annos, image_shape, mask_format=self.instance_mask_format
)
instances.gt_object_descriptions = ObjDescription(object_descriptions)
del all_annos
if self.recompute_boxes:
instances.gt_boxes = instances.gt_masks.get_bounding_boxes()
dataset_dict["instances"] = utils.filter_empty_instances(instances)
return dataset_dict
class ObjDescription:
def __init__(self, object_descriptions):
self.data = object_descriptions
def __getitem__(self, item):
assert type(item) == torch.Tensor
assert item.dim() == 1
if len(item) > 0:
assert item.dtype == torch.int64 or item.dtype == torch.bool
if item.dtype == torch.int64:
return ObjDescription([self.data[x.item()] for x in item])
elif item.dtype == torch.bool:
return ObjDescription(list(compress(self.data, item)))
return ObjDescription(list(compress(self.data, item)))
def __len__(self):
return len(self.data)
def __repr__(self):
return "ObjDescription({})".format(self.data)