|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
import traceback |
|
|
|
from saicinpainting.evaluation.utils import move_to_device |
|
from saicinpainting.evaluation.refinement import refine_predict |
|
os.environ['OMP_NUM_THREADS'] = '1' |
|
os.environ['OPENBLAS_NUM_THREADS'] = '1' |
|
os.environ['MKL_NUM_THREADS'] = '1' |
|
os.environ['VECLIB_MAXIMUM_THREADS'] = '1' |
|
os.environ['NUMEXPR_NUM_THREADS'] = '1' |
|
|
|
import cv2 |
|
import hydra |
|
import numpy as np |
|
import torch |
|
import tqdm |
|
import yaml |
|
from omegaconf import OmegaConf |
|
from torch.utils.data._utils.collate import default_collate |
|
|
|
from saicinpainting.training.data.datasets import make_default_val_dataset |
|
from saicinpainting.training.trainers import load_checkpoint |
|
from saicinpainting.utils import register_debug_signal_handlers |
|
|
|
LOGGER = logging.getLogger(__name__) |
|
|
|
|
|
@hydra.main(config_path='../configs/prediction', config_name='default.yaml') |
|
def main(predict_config: OmegaConf): |
|
try: |
|
register_debug_signal_handlers() |
|
|
|
device = torch.device(predict_config.device) |
|
|
|
train_config_path = os.path.join(predict_config.model.path, 'config.yaml') |
|
with open(train_config_path, 'r') as f: |
|
train_config = OmegaConf.create(yaml.safe_load(f)) |
|
|
|
train_config.training_model.predict_only = True |
|
train_config.visualizer.kind = 'noop' |
|
|
|
out_ext = predict_config.get('out_ext', '.png') |
|
|
|
checkpoint_path = os.path.join(predict_config.model.path, |
|
'models', |
|
predict_config.model.checkpoint) |
|
model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu') |
|
model.freeze() |
|
if not predict_config.get('refine', False): |
|
model.to(device) |
|
|
|
if not predict_config.indir.endswith('/'): |
|
predict_config.indir += '/' |
|
|
|
dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset) |
|
for img_i in tqdm.trange(len(dataset)): |
|
mask_fname = dataset.mask_filenames[img_i] |
|
cur_out_fname = os.path.join( |
|
predict_config.outdir, |
|
os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext |
|
) |
|
os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) |
|
batch = default_collate([dataset[img_i]]) |
|
if predict_config.get('refine', False): |
|
assert 'unpad_to_size' in batch, "Unpadded size is required for the refinement" |
|
|
|
|
|
cur_res = refine_predict(batch, model, **predict_config.refiner) |
|
cur_res = cur_res[0].permute(1,2,0).detach().cpu().numpy() |
|
else: |
|
with torch.no_grad(): |
|
batch = move_to_device(batch, device) |
|
batch['mask'] = (batch['mask'] > 0) * 1 |
|
batch = model(batch) |
|
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy() |
|
unpad_to_size = batch.get('unpad_to_size', None) |
|
if unpad_to_size is not None: |
|
orig_height, orig_width = unpad_to_size |
|
cur_res = cur_res[:orig_height, :orig_width] |
|
|
|
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') |
|
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) |
|
cv2.imwrite(cur_out_fname, cur_res) |
|
|
|
except KeyboardInterrupt: |
|
LOGGER.warning('Interrupted by user') |
|
except Exception as ex: |
|
LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}') |
|
sys.exit(1) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |