|
from segment_anything.modeling import Sam |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from typing import Optional, Tuple |
|
|
|
from segment_anything.utils.transforms import ResizeLongestSide |
|
|
|
class SamPredictor: |
|
def __init__( |
|
self, |
|
sam_model: Sam, |
|
) -> None: |
|
""" |
|
Uses SAM to calculate the image embedding for an image, and then |
|
allow repeated, efficient mask prediction given prompts. |
|
|
|
Arguments: |
|
sam_model (Sam): The model to use for mask prediction. |
|
""" |
|
super().__init__() |
|
self.model = sam_model |
|
self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) |
|
|
|
|
|
|
|
def set_image( |
|
self, |
|
image: np.ndarray, |
|
image_format: str = "RGB", |
|
) -> None: |
|
""" |
|
Calculates the image embeddings for the provided image, allowing |
|
masks to be predicted with the 'predict' method. |
|
|
|
Arguments: |
|
image (np.ndarray): The image for calculating masks. Expects an |
|
image in HWC uint8 format, with pixel values in [0, 255]. |
|
image_format (str): The color format of the image, in ['RGB', 'BGR']. |
|
""" |
|
assert image_format in [ |
|
"RGB", |
|
"BGR", |
|
], f"image_format must be in ['RGB', 'BGR'], is {image_format}." |
|
if image_format != self.model.image_format: |
|
image = image[..., ::-1] |
|
|
|
|
|
input_image = self.transform.apply_image(image) |
|
input_image_torch = torch.as_tensor(input_image, device=self.device) |
|
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] |
|
|
|
return self.set_torch_image(input_image_torch, image.shape[:2]) |
|
|
|
@torch.no_grad() |
|
def set_torch_image( |
|
self, |
|
transformed_image: torch.Tensor, |
|
original_image_size: Tuple[int, ...], |
|
) -> None: |
|
""" |
|
Calculates the image embeddings for the provided image, allowing |
|
masks to be predicted with the 'predict' method. Expects the input |
|
image to be already transformed to the format expected by the model. |
|
|
|
Arguments: |
|
transformed_image (torch.Tensor): The input image, with shape |
|
1x3xHxW, which has been transformed with ResizeLongestSide. |
|
original_image_size (tuple(int, int)): The size of the image |
|
before transformation, in (H, W) format. |
|
""" |
|
assert ( |
|
len(transformed_image.shape) == 4 |
|
and transformed_image.shape[1] == 3 |
|
and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size |
|
), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." |
|
|
|
|
|
original_size = original_image_size |
|
input_size = tuple(transformed_image.shape[-2:]) |
|
input_image = self.model.preprocess(transformed_image) |
|
features = self.model.image_encoder(input_image) |
|
|
|
res = {'features': features, 'original_size': original_size, 'input_size': input_size} |
|
return res |
|
|
|
def predict( |
|
self, |
|
features, |
|
point_coords: Optional[np.ndarray] = None, |
|
point_labels: Optional[np.ndarray] = None, |
|
box: Optional[np.ndarray] = None, |
|
mask_input: Optional[np.ndarray] = None, |
|
multimask_output: bool = True, |
|
return_logits: bool = False, |
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: |
|
""" |
|
Predict masks for the given input prompts, using the currently set image. |
|
|
|
Arguments: |
|
point_coords (np.ndarray or None): A Nx2 array of point prompts to the |
|
model. Each point is in (X,Y) in pixels. |
|
point_labels (np.ndarray or None): A length N array of labels for the |
|
point prompts. 1 indicates a foreground point and 0 indicates a |
|
background point. |
|
box (np.ndarray or None): A length 4 array given a box prompt to the |
|
model, in XYXY format. |
|
mask_input (np.ndarray): A low resolution mask input to the model, typically |
|
coming from a previous prediction iteration. Has form 1xHxW, where |
|
for SAM, H=W=256. |
|
multimask_output (bool): If true, the model will return three masks. |
|
For ambiguous input prompts (such as a single click), this will often |
|
produce better masks than a single prediction. If only a single |
|
mask is needed, the model's predicted quality score can be used |
|
to select the best mask. For non-ambiguous prompts, such as multiple |
|
input prompts, multimask_output=False can give better results. |
|
return_logits (bool): If true, returns un-thresholded masks logits |
|
instead of a binary mask. |
|
|
|
Returns: |
|
(np.ndarray): The output masks in CxHxW format, where C is the |
|
number of masks, and (H, W) is the original image size. |
|
(np.ndarray): An array of length C containing the model's |
|
predictions for the quality of each mask. |
|
(np.ndarray): An array of shape CxHxW, where C is the number |
|
of masks and H=W=256. These low resolution logits can be passed to |
|
a subsequent iteration as mask input. |
|
""" |
|
if features.get('features', None) is None: |
|
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") |
|
|
|
|
|
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None |
|
if point_coords is not None: |
|
assert ( |
|
point_labels is not None |
|
), "point_labels must be supplied if point_coords is supplied." |
|
point_coords = self.transform.apply_coords(point_coords, features['original_size']) |
|
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) |
|
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) |
|
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] |
|
if box is not None: |
|
box = self.transform.apply_boxes(box, features['original_size']) |
|
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) |
|
box_torch = box_torch[None, :] |
|
if mask_input is not None: |
|
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device) |
|
mask_input_torch = mask_input_torch[None, :, :, :] |
|
|
|
masks, iou_predictions, low_res_masks = self.predict_torch( |
|
features, |
|
coords_torch, |
|
labels_torch, |
|
box_torch, |
|
mask_input_torch, |
|
multimask_output, |
|
return_logits=return_logits, |
|
) |
|
|
|
masks_np = masks[0].detach().cpu().numpy() |
|
iou_predictions_np = iou_predictions[0].detach().cpu().numpy() |
|
low_res_masks_np = low_res_masks[0].detach().cpu().numpy() |
|
return masks_np, iou_predictions_np, low_res_masks_np |
|
|
|
@torch.no_grad() |
|
def predict_torch( |
|
self, |
|
features, |
|
point_coords: Optional[torch.Tensor], |
|
point_labels: Optional[torch.Tensor], |
|
boxes: Optional[torch.Tensor] = None, |
|
mask_input: Optional[torch.Tensor] = None, |
|
multimask_output: bool = True, |
|
return_logits: bool = False, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Predict masks for the given input prompts, using the currently set image. |
|
Input prompts are batched torch tensors and are expected to already be |
|
transformed to the input frame using ResizeLongestSide. |
|
|
|
Arguments: |
|
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the |
|
model. Each point is in (X,Y) in pixels. |
|
point_labels (torch.Tensor or None): A BxN array of labels for the |
|
point prompts. 1 indicates a foreground point and 0 indicates a |
|
background point. |
|
boxes (np.ndarray or None): A Bx4 array given a box prompt to the |
|
model, in XYXY format. |
|
mask_input (np.ndarray): A low resolution mask input to the model, typically |
|
coming from a previous prediction iteration. Has form Bx1xHxW, where |
|
for SAM, H=W=256. Masks returned by a previous iteration of the |
|
predict method do not need further transformation. |
|
multimask_output (bool): If true, the model will return three masks. |
|
For ambiguous input prompts (such as a single click), this will often |
|
produce better masks than a single prediction. If only a single |
|
mask is needed, the model's predicted quality score can be used |
|
to select the best mask. For non-ambiguous prompts, such as multiple |
|
input prompts, multimask_output=False can give better results. |
|
return_logits (bool): If true, returns un-thresholded masks logits |
|
instead of a binary mask. |
|
|
|
Returns: |
|
(torch.Tensor): The output masks in BxCxHxW format, where C is the |
|
number of masks, and (H, W) is the original image size. |
|
(torch.Tensor): An array of shape BxC containing the model's |
|
predictions for the quality of each mask. |
|
(torch.Tensor): An array of shape BxCxHxW, where C is the number |
|
of masks and H=W=256. These low res logits can be passed to |
|
a subsequent iteration as mask input. |
|
""" |
|
if features.get('features', None) is None: |
|
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") |
|
|
|
if point_coords is not None: |
|
points = (point_coords, point_labels) |
|
else: |
|
points = None |
|
|
|
|
|
sparse_embeddings, dense_embeddings = self.model.prompt_encoder( |
|
points=points, |
|
boxes=boxes, |
|
masks=mask_input, |
|
) |
|
|
|
|
|
low_res_masks, iou_predictions = self.model.mask_decoder( |
|
image_embeddings=features['features'], |
|
image_pe=self.model.prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=sparse_embeddings, |
|
dense_prompt_embeddings=dense_embeddings, |
|
multimask_output=multimask_output, |
|
) |
|
|
|
|
|
masks = self.model.postprocess_masks(low_res_masks, features['input_size'], features['original_size']) |
|
|
|
if not return_logits: |
|
masks = masks > self.model.mask_threshold |
|
|
|
return masks, iou_predictions, low_res_masks |
|
|
|
def get_image_embedding(self, image) -> torch.Tensor: |
|
return self.set_image(image) |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return self.model.device |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|