|
|
|
import os |
|
from collections import OrderedDict |
|
|
|
from timm.models.layers import DropPath |
|
import torch |
|
from torch import nn |
|
from torch.nn import MultiheadAttention |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
|
|
|
|
MODEL_PATH = './' |
|
_MODELS = { |
|
"ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), |
|
"ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), |
|
"ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), |
|
} |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16.""" |
|
|
|
def forward(self, x): |
|
orig_type = x.dtype |
|
ret = super().forward(x.type(torch.float32)) |
|
return ret.type(orig_type) |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
def forward(self, x): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class Local_MHRA(nn.Module): |
|
def __init__(self, d_model, dw_reduction=1.5, pos_kernel_size=3): |
|
super().__init__() |
|
|
|
padding = pos_kernel_size // 2 |
|
re_d_model = int(d_model // dw_reduction) |
|
self.pos_embed = nn.Sequential( |
|
nn.BatchNorm3d(d_model), |
|
nn.Conv3d(d_model, re_d_model, kernel_size=1, stride=1, padding=0), |
|
nn.Conv3d(re_d_model, re_d_model, kernel_size=(pos_kernel_size, 1, 1), stride=(1, 1, 1), padding=(padding, 0, 0), groups=re_d_model), |
|
nn.Conv3d(re_d_model, d_model, kernel_size=1, stride=1, padding=0), |
|
) |
|
|
|
|
|
print('Init zero for Conv in pos_emb') |
|
nn.init.constant_(self.pos_embed[3].weight, 0) |
|
nn.init.constant_(self.pos_embed[3].bias, 0) |
|
|
|
def forward(self, x): |
|
return self.pos_embed(x) |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__( |
|
self, d_model, n_head, attn_mask=None, drop_path=0.0, |
|
dw_reduction=1.5, no_lmhra=False, double_lmhra=True |
|
): |
|
super().__init__() |
|
|
|
self.n_head = n_head |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
print(f'Drop path rate: {drop_path}') |
|
|
|
self.no_lmhra = no_lmhra |
|
self.double_lmhra = double_lmhra |
|
print(f'No L_MHRA: {no_lmhra}') |
|
print(f'Double L_MHRA: {double_lmhra}') |
|
if not no_lmhra: |
|
self.lmhra1 = Local_MHRA(d_model, dw_reduction=dw_reduction) |
|
if double_lmhra: |
|
self.lmhra2 = Local_MHRA(d_model, dw_reduction=dw_reduction) |
|
|
|
|
|
self.attn = MultiheadAttention(d_model, n_head) |
|
self.ln_1 = LayerNorm(d_model) |
|
self.mlp = nn.Sequential(OrderedDict([ |
|
("c_fc", nn.Linear(d_model, d_model * 4)), |
|
("gelu", QuickGELU()), |
|
("c_proj", nn.Linear(d_model * 4, d_model)) |
|
])) |
|
self.ln_2 = LayerNorm(d_model) |
|
self.attn_mask = attn_mask |
|
|
|
def attention(self, x): |
|
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None |
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] |
|
|
|
def forward(self, x, T=8, use_checkpoint=False): |
|
|
|
if not self.no_lmhra: |
|
|
|
tmp_x = x[1:, :, :] |
|
L, NT, C = tmp_x.shape |
|
N = NT // T |
|
H = W = int(L ** 0.5) |
|
tmp_x = tmp_x.view(H, W, N, T, C).permute(2, 4, 3, 0, 1).contiguous() |
|
tmp_x = tmp_x + self.drop_path(self.lmhra1(tmp_x)) |
|
tmp_x = tmp_x.view(N, C, T, L).permute(3, 0, 2, 1).contiguous().view(L, NT, C) |
|
x = torch.cat([x[:1, :, :], tmp_x], dim=0) |
|
|
|
if use_checkpoint: |
|
attn_out = checkpoint.checkpoint(self.attention, self.ln_1(x)) |
|
x = x + self.drop_path(attn_out) |
|
else: |
|
x = x + self.drop_path(self.attention(self.ln_1(x))) |
|
|
|
if not self.no_lmhra and self.double_lmhra: |
|
tmp_x = x[1:, :, :] |
|
tmp_x = tmp_x.view(H, W, N, T, C).permute(2, 4, 3, 0, 1).contiguous() |
|
tmp_x = tmp_x + self.drop_path(self.lmhra2(tmp_x)) |
|
tmp_x = tmp_x.view(N, C, T, L).permute(3, 0, 2, 1).contiguous().view(L, NT, C) |
|
x = torch.cat([x[:1, :, :], tmp_x], dim=0) |
|
|
|
if use_checkpoint: |
|
mlp_out = checkpoint.checkpoint(self.mlp, self.ln_2(x)) |
|
x = x + self.drop_path(mlp_out) |
|
else: |
|
x = x + self.drop_path(self.mlp(self.ln_2(x))) |
|
return x |
|
|
|
|
|
class Extractor(nn.Module): |
|
def __init__( |
|
self, d_model, n_head, attn_mask=None, |
|
mlp_factor=4.0, dropout=0.0, drop_path=0.0, |
|
): |
|
super().__init__() |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
print(f'Drop path rate: {drop_path}') |
|
self.attn = nn.MultiheadAttention(d_model, n_head) |
|
self.ln_1 = nn.LayerNorm(d_model) |
|
d_mlp = round(mlp_factor * d_model) |
|
self.mlp = nn.Sequential(OrderedDict([ |
|
("c_fc", nn.Linear(d_model, d_mlp)), |
|
("gelu", QuickGELU()), |
|
("dropout", nn.Dropout(dropout)), |
|
("c_proj", nn.Linear(d_mlp, d_model)) |
|
])) |
|
self.ln_2 = nn.LayerNorm(d_model) |
|
self.ln_3 = nn.LayerNorm(d_model) |
|
self.attn_mask = attn_mask |
|
|
|
|
|
nn.init.xavier_uniform_(self.attn.in_proj_weight) |
|
nn.init.constant_(self.attn.out_proj.weight, 0.) |
|
nn.init.constant_(self.attn.out_proj.bias, 0.) |
|
nn.init.xavier_uniform_(self.mlp[0].weight) |
|
nn.init.constant_(self.mlp[-1].weight, 0.) |
|
nn.init.constant_(self.mlp[-1].bias, 0.) |
|
|
|
def attention(self, x, y): |
|
d_model = self.ln_1.weight.size(0) |
|
q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] |
|
|
|
k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] |
|
v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] |
|
Tx, Ty, N = q.size(0), k.size(0), q.size(1) |
|
q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) |
|
k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) |
|
v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) |
|
aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) |
|
|
|
aff = aff.softmax(dim=-1) |
|
out = aff @ v |
|
out = out.permute(2, 0, 1, 3).flatten(2) |
|
out = self.attn.out_proj(out) |
|
return out |
|
|
|
def forward(self, x, y): |
|
x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y))) |
|
x = x + self.drop_path(self.mlp(self.ln_2(x))) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, width, layers, heads, attn_mask=None, backbone_drop_path_rate=0., |
|
use_checkpoint=False, checkpoint_num=[0], t_size=8, dw_reduction=2, |
|
no_lmhra=False, double_lmhra=True, |
|
return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], |
|
n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., |
|
mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], |
|
cls_dropout=0.5, num_classes=400, |
|
): |
|
super().__init__() |
|
self.T = t_size |
|
self.return_list = return_list |
|
|
|
b_dpr = [x.item() for x in torch.linspace(0, backbone_drop_path_rate, layers)] |
|
self.resblocks = nn.ModuleList([ |
|
ResidualAttentionBlock( |
|
width, heads, attn_mask, |
|
drop_path=b_dpr[i], |
|
dw_reduction=dw_reduction, |
|
no_lmhra=no_lmhra, |
|
double_lmhra=double_lmhra, |
|
) for i in range(layers) |
|
]) |
|
|
|
self.use_checkpoint = use_checkpoint |
|
self.checkpoint_num = checkpoint_num |
|
self.n_layers = n_layers |
|
print(f'Use checkpoint: {self.use_checkpoint}') |
|
print(f'Checkpoint number: {self.checkpoint_num}') |
|
|
|
|
|
assert n_layers == len(return_list) |
|
if n_layers > 0: |
|
self.temporal_cls_token = nn.Parameter(torch.zeros(1, 1, n_dim)) |
|
self.dpe = nn.ModuleList([ |
|
nn.Conv3d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) |
|
for i in range(n_layers) |
|
]) |
|
for m in self.dpe: |
|
nn.init.constant_(m.bias, 0.) |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] |
|
self.dec = nn.ModuleList([ |
|
Extractor( |
|
n_dim, n_head, mlp_factor=mlp_factor, |
|
dropout=mlp_dropout[i], drop_path=dpr[i], |
|
) for i in range(n_layers) |
|
]) |
|
self.balance = nn.Parameter(torch.zeros((n_dim))) |
|
self.sigmoid = nn.Sigmoid() |
|
|
|
self.proj = nn.Sequential( |
|
nn.LayerNorm(n_dim), |
|
nn.Dropout(cls_dropout), |
|
nn.Linear(n_dim, num_classes), |
|
) |
|
|
|
def forward(self, x): |
|
T_down = self.T |
|
L, NT, C = x.shape |
|
N = NT // T_down |
|
H = W = int((L - 1) ** 0.5) |
|
|
|
if self.n_layers > 0: |
|
cls_token = self.temporal_cls_token.repeat(1, N, 1) |
|
|
|
j = -1 |
|
for i, resblock in enumerate(self.resblocks): |
|
if self.use_checkpoint and i < self.checkpoint_num[0]: |
|
x = resblock(x, self.T, use_checkpoint=True) |
|
else: |
|
x = resblock(x, T_down) |
|
if i in self.return_list: |
|
j += 1 |
|
tmp_x = x.clone() |
|
tmp_x = tmp_x.view(L, N, T_down, C) |
|
|
|
_, tmp_feats = tmp_x[:1], tmp_x[1:] |
|
tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T_down, H, W) |
|
tmp_feats = self.dpe[j](tmp_feats).view(N, C, T_down, L - 1).permute(3, 0, 2, 1).contiguous() |
|
tmp_x[1:] = tmp_x[1:] + tmp_feats |
|
|
|
tmp_x = tmp_x.permute(2, 0, 1, 3).flatten(0, 1) |
|
cls_token = self.dec[j](cls_token, tmp_x) |
|
|
|
if self.n_layers > 0: |
|
weight = self.sigmoid(self.balance) |
|
residual = x.view(L, N, T_down, C)[0].mean(1) |
|
return self.proj((1 - weight) * cls_token[0, :, :] + weight * residual) |
|
else: |
|
residual = x.view(L, N, T_down, C)[0].mean(1) |
|
return self.proj(residual) |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
|
|
input_resolution, patch_size, width, layers, heads, output_dim, backbone_drop_path_rate=0., |
|
use_checkpoint=False, checkpoint_num=[0], t_size=8, kernel_size=3, dw_reduction=1.5, |
|
temporal_downsample=True, |
|
no_lmhra=-False, double_lmhra=True, |
|
|
|
return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], |
|
n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., |
|
mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], |
|
cls_dropout=0.5, num_classes=400, |
|
): |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.output_dim = output_dim |
|
padding = (kernel_size - 1) // 2 |
|
if temporal_downsample: |
|
self.conv1 = nn.Conv3d(3, width, (kernel_size, patch_size, patch_size), (2, patch_size, patch_size), (padding, 0, 0), bias=False) |
|
t_size = t_size // 2 |
|
else: |
|
self.conv1 = nn.Conv3d(3, width, (1, patch_size, patch_size), (1, patch_size, patch_size), (0, 0, 0), bias=False) |
|
|
|
scale = width ** -0.5 |
|
self.class_embedding = nn.Parameter(scale * torch.randn(width)) |
|
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) |
|
self.ln_pre = LayerNorm(width) |
|
|
|
self.transformer = Transformer( |
|
width, layers, heads, dw_reduction=dw_reduction, |
|
backbone_drop_path_rate=backbone_drop_path_rate, |
|
use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, |
|
no_lmhra=no_lmhra, double_lmhra=double_lmhra, |
|
return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, |
|
mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, |
|
cls_dropout=cls_dropout, num_classes=num_classes, |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
N, C, T, H, W = x.shape |
|
x = x.permute(0, 2, 3, 4, 1).reshape(N * T, H * W, C) |
|
|
|
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) |
|
x = x + self.positional_embedding.to(x.dtype) |
|
x = self.ln_pre(x) |
|
|
|
x = x.permute(1, 0, 2) |
|
out = self.transformer(x) |
|
return out |
|
|
|
|
|
def inflate_weight(weight_2d, time_dim, center=True): |
|
print(f'Init center: {center}') |
|
if center: |
|
weight_3d = torch.zeros(*weight_2d.shape) |
|
weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) |
|
middle_idx = time_dim // 2 |
|
weight_3d[:, :, middle_idx, :, :] = weight_2d |
|
else: |
|
weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) |
|
weight_3d = weight_3d / time_dim |
|
return weight_3d |
|
|
|
|
|
def load_state_dict(model, state_dict): |
|
state_dict_3d = model.state_dict() |
|
for k in state_dict.keys(): |
|
if state_dict[k].shape != state_dict_3d[k].shape: |
|
if len(state_dict_3d[k].shape) <= 2: |
|
print(f'Ignore: {k}') |
|
continue |
|
print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}') |
|
time_dim = state_dict_3d[k].shape[2] |
|
state_dict[k] = inflate_weight(state_dict[k], time_dim) |
|
model.load_state_dict(state_dict, strict=False) |
|
|
|
|
|
def intern_action_b16( |
|
pretrained=True, use_checkpoint=False, checkpoint_num=[0], |
|
t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., |
|
temporal_downsample=True, |
|
no_lmhra=False, double_lmhra=True, |
|
return_list=[8, 9, 10, 11], |
|
n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., |
|
mlp_dropout=[0.5, 0.5, 0.5, 0.5], |
|
cls_dropout=0.5, num_classes=400, |
|
): |
|
model = VisionTransformer( |
|
input_resolution=224, |
|
patch_size=16, |
|
width=768, |
|
layers=12, |
|
heads=12, |
|
output_dim=512, |
|
use_checkpoint=use_checkpoint, |
|
checkpoint_num=checkpoint_num, |
|
t_size=t_size, |
|
dw_reduction=dw_reduction, |
|
backbone_drop_path_rate=backbone_drop_path_rate, |
|
temporal_downsample=temporal_downsample, |
|
no_lmhra=no_lmhra, |
|
double_lmhra=double_lmhra, |
|
return_list=return_list, |
|
n_layers=n_layers, |
|
n_dim=n_dim, |
|
n_head=n_head, |
|
mlp_factor=mlp_factor, |
|
drop_path_rate=drop_path_rate, |
|
mlp_dropout=mlp_dropout, |
|
cls_dropout=cls_dropout, |
|
num_classes=num_classes, |
|
) |
|
|
|
if pretrained: |
|
print('load pretrained weights') |
|
state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') |
|
load_state_dict(model, state_dict) |
|
return model.eval() |
|
|
|
|
|
def intern_action_l14( |
|
pretrained=True, use_checkpoint=False, checkpoint_num=[0], |
|
t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., |
|
temporal_downsample=True, |
|
no_lmhra=False, double_lmhra=True, |
|
return_list=[20, 21, 22, 23], |
|
n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., |
|
mlp_dropout=[0.5, 0.5, 0.5, 0.5], |
|
cls_dropout=0.5, num_classes=400, |
|
): |
|
model = VisionTransformer( |
|
input_resolution=224, |
|
patch_size=14, |
|
width=1024, |
|
layers=24, |
|
heads=16, |
|
output_dim=768, |
|
use_checkpoint=use_checkpoint, |
|
checkpoint_num=checkpoint_num, |
|
t_size=t_size, |
|
dw_reduction=dw_reduction, |
|
backbone_drop_path_rate=backbone_drop_path_rate, |
|
temporal_downsample=temporal_downsample, |
|
no_lmhra=no_lmhra, |
|
double_lmhra=double_lmhra, |
|
return_list=return_list, |
|
n_layers=n_layers, |
|
n_dim=n_dim, |
|
n_head=n_head, |
|
mlp_factor=mlp_factor, |
|
drop_path_rate=drop_path_rate, |
|
mlp_dropout=mlp_dropout, |
|
cls_dropout=cls_dropout, |
|
num_classes=num_classes, |
|
) |
|
|
|
if pretrained: |
|
print('load pretrained weights') |
|
state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') |
|
load_state_dict(model, state_dict) |
|
return model.eval() |
|
|
|
|
|
def intern_action_l14_336( |
|
pretrained=True, use_checkpoint=False, checkpoint_num=[0], |
|
t_size=16, dw_reduction=1.5, backbone_drop_path_rate=0., |
|
no_temporal_downsample=True, |
|
no_lmhra=False, double_lmhra=True, |
|
return_list=[20, 21, 22, 23], |
|
n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., |
|
mlp_dropout=[0.5, 0.5, 0.5, 0.5], |
|
cls_dropout=0.5, num_classes=400, |
|
): |
|
model = VisionTransformer( |
|
input_resolution=336, |
|
patch_size=14, |
|
width=1024, |
|
layers=24, |
|
heads=16, |
|
output_dim=768, |
|
use_checkpoint=use_checkpoint, |
|
checkpoint_num=checkpoint_num, |
|
t_size=t_size, |
|
dw_reduction=dw_reduction, |
|
backbone_drop_path_rate=backbone_drop_path_rate, |
|
no_temporal_downsample=no_temporal_downsample, |
|
no_lmhra=no_lmhra, |
|
double_lmhra=double_lmhra, |
|
return_list=return_list, |
|
n_layers=n_layers, |
|
n_dim=n_dim, |
|
n_head=n_head, |
|
mlp_factor=mlp_factor, |
|
drop_path_rate=drop_path_rate, |
|
mlp_dropout=mlp_dropout, |
|
cls_dropout=cls_dropout, |
|
num_classes=num_classes, |
|
) |
|
|
|
if pretrained: |
|
print('load pretrained weights') |
|
state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') |
|
load_state_dict(model, state_dict) |
|
return model.eval() |
|
|
|
|
|
if __name__ == '__main__': |
|
import time |
|
from fvcore.nn import FlopCountAnalysis |
|
from fvcore.nn import flop_count_table |
|
import numpy as np |
|
|
|
seed = 4217 |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
num_frames = 16 |
|
|
|
model = intern_action_l14( |
|
pretrained=False, |
|
t_size=num_frames, backbone_drop_path_rate=0., drop_path_rate=0., |
|
dw_reduction=1.5, |
|
no_lmhra=False, |
|
temporal_downsample=True, |
|
return_list=[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], |
|
mlp_dropout=[0.5]*16, |
|
n_layers=16 |
|
) |
|
print(model) |
|
|
|
flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224)) |
|
s = time.time() |
|
print(flop_count_table(flops, max_depth=1)) |
|
print(time.time()-s) |
|
|