zyliu's picture
release iChatApp
0f90f73
raw
history blame
15.4 kB
"""Inference for FastChat models."""
import abc
from typing import Optional
import os
import requests
from PIL import Image
from io import BytesIO
import numpy as np
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import (
AutoTokenizer,
GenerationConfig,
StoppingCriteria,
StoppingCriteriaList,
Blip2VisionConfig
)
from .husky_src.husky_chat import Blip2LlaMAForConditionalGeneration
from .husky_src.conversation import (
conv_templates,
get_default_conv_template,
)
from .husky_src.compression import compress_module
from .utils import prompts, gen_new_name
DEFAULT_UNK_TOKEN = "<unk>"
DEFAULT_IMAGE_TOKEN = "<ImageContent>"
DEFAULT_IMG_START_TOKEN = "<img>"
DEFAULT_IMG_END_TOKEN = "</img>"
IGNORE_INDEX = -100
def get_gpu_memory(max_gpus=None):
gpu_memory = []
num_gpus = (
torch.cuda.device_count()
if max_gpus is None
else min(max_gpus, torch.cuda.device_count())
)
for gpu_id in range(num_gpus):
with torch.cuda.device(gpu_id):
device = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device)
total_memory = gpu_properties.total_memory / (1024 ** 3)
allocated_memory = torch.cuda.memory_allocated() / (1024 ** 3)
available_memory = total_memory - allocated_memory
gpu_memory.append(available_memory)
return gpu_memory
def load_model(
model_path, device, num_gpus, max_gpu_memory=None, load_8bit=False, debug=False
):
kwargs = {"torch_dtype": torch.float16}
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=False)
model = Blip2LlaMAForConditionalGeneration.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs
)
if load_8bit:
compress_module(model, device)
if (device == "cuda" and num_gpus == 1) or device == "mps":
model.to(device)
if debug:
print(model)
model = model.eval()
return model, tokenizer
def load_image(image_file):
if image_file.startswith('http') or image_file.startswith('https'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def build_transform(input_size):
crop_pct = 224 / 256
size = int(input_size / crop_pct)
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize(size, interpolation=InterpolationMode.BICUBIC),
T.CenterCrop(input_size),
T.ToTensor(),
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
return transform
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops, encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
@torch.inference_mode()
def generate_stream(
model, tokenizer, image_processor, params, device
):
prompt = params["prompt"]
images = params.get("images", None)
temperature = float(params.get("temperature", 0.7))
max_new_tokens = int(params.get("max_new_tokens", 1024))
num_queries = model.config.num_query_tokens
stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
stop_words_ids = [tokenizer(stop_word, return_tensors='pt')[
'input_ids'].squeeze() for stop_word in stop_words]
stopping_criteria = StoppingCriteriaList(
[StoppingCriteriaSub(stops=stop_words_ids)])
if images is not None:
pixel_values = image_processor(load_image(images)).to(
device) # only support one image
image_query = DEFAULT_IMG_START_TOKEN + \
DEFAULT_IMAGE_TOKEN * num_queries + DEFAULT_IMG_END_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, image_query)
model_inputs = tokenizer([prompt], return_tensors="pt")
model_inputs["pixel_values"] = pixel_values
model_inputs.pop("token_type_ids", None)
else:
raise NotImplementedError
generation_config = GenerationConfig(
bos_token_id=1,
do_sample=True,
temperature=temperature,
max_new_tokens=max_new_tokens,
stopping_criteria=stopping_criteria
)
generation_output = model.generate(
**model_inputs,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True
)
preds = generation_output.sequences
outputs = tokenizer.batch_decode(preds, skip_special_tokens=True)
return outputs
def resize_pos_embed(posemb, posemb_new, num_prefix_tokens=1, gs_new=()):
# Rescale the grid of position embeddings when loading from state_dict.
ntok_new = posemb_new.shape[1]
if num_prefix_tokens:
posemb_prefix, posemb_grid = posemb[:,
:num_prefix_tokens], posemb[0, num_prefix_tokens:]
ntok_new -= num_prefix_tokens
else:
posemb_prefix, posemb_grid = posemb[:, :0], posemb[0]
gs_old = int(math.sqrt(len(posemb_grid)))
if not len(gs_new): # backwards compatibility
gs_new = [int(math.sqrt(ntok_new))] * 2
assert len(gs_new) >= 2
posemb_grid = posemb_grid.reshape(
1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(
posemb_grid, size=gs_new, mode='bicubic', align_corners=False)
posemb_grid = posemb_grid.permute(
0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
posemb = torch.cat([posemb_prefix, posemb_grid], dim=1)
return posemb
class Blip2VisionEmbeddings(nn.Module):
def __init__(self, config: Blip2VisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.num_frames = getattr(self.config, "num_frames", 16)
self.frame_stride = 4
self.patch_embedding = nn.Conv3d(
in_channels=3, out_channels=self.embed_dim,
kernel_size=(self.frame_stride, self.patch_size, self.patch_size),
stride=(self.frame_stride, self.patch_size, self.patch_size)
)
self.num_patches = int(self.num_frames // self.frame_stride) * \
(self.image_size // self.patch_size) ** 2
self.class_embedding = nn.Parameter(
torch.randn(1, 1, self.embed_dim), )
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Parameter(
torch.randn(1, self.num_positions, self.embed_dim))
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values).squeeze(
1) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(
batch_size, 1, -1).to(target_dtype)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + \
self.position_embedding[:, : embeddings.size(
1), :].to(target_dtype)
return embeddings
class Chat:
def __init__(
self,
model_path,
device,
num_gpus=1,
load_8bit=False,
conv_template="multi_model",
temperature=0.7,
max_new_tokens=512,
):
model, tokenizer = load_model(
model_path, device, num_gpus, load_8bit=load_8bit
)
self.conv_template = conv_template
self.model = model.to(device)
self.tokenizer = tokenizer
num_queries = model.config.num_query_tokens
self.image_processor = build_transform(input_size=224)
self.device = device
self.dtype = model.dtype
stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
stop_words_ids = [tokenizer(stop_word, return_tensors='pt')[
'input_ids'].squeeze() for stop_word in stop_words]
stopping_criteria = StoppingCriteriaList(
[StoppingCriteriaSub(stops=stop_words_ids)])
if conv_template:
conv = conv_templates[conv_template].copy()
else:
conv = get_default_conv_template(model_path).copy()
self.conv = conv
self.image_query = DEFAULT_IMG_START_TOKEN + \
DEFAULT_IMAGE_TOKEN * num_queries + DEFAULT_IMG_END_TOKEN
self.generation_config = GenerationConfig(
bos_token_id=1,
do_sample=True,
top_k=20,
temperature=temperature,
max_new_tokens=max_new_tokens,
stopping_criteria=stopping_criteria
)
def ask(self, text, conv):
conversations = []
if len(conv.messages) > 0:
conv.append_message(conv.roles[0], text)
else:
conv.append_message(conv.roles[0], self.image_query + "\n" + text)
conv.append_message(conv.roles[1], None)
conversations.append(conv.get_prompt())
return conversations
@torch.no_grad()
def get_image_embedding(self, image_file):
image = load_image(image_file)
pixel_values = self.image_processor(image)
pixel_values = pixel_values.unsqueeze(
0).to(self.device, dtype=self.dtype)
language_model_inputs = self.model.extract_feature(pixel_values)
return language_model_inputs
@torch.no_grad()
def answer(self, conversations, language_model_inputs):
model_inputs = self.tokenizer(
conversations,
return_tensors="pt",
)
model_inputs.pop("token_type_ids", None)
input_ids = model_inputs["input_ids"].to(self.device)
attention_mask = model_inputs["attention_mask"].to(self.device)
generation_output = self.model.generate(
pixel_values=None,
input_ids=input_ids,
attention_mask=attention_mask,
language_model_inputs=language_model_inputs,
generation_config=self.generation_config,
return_dict_in_generate=True,
output_scores=True
)
preds = generation_output.sequences
outputs = self.tokenizer.batch_decode(
preds, skip_special_tokens=True)[0]
return outputs
def reset(self):
if self.conv_template:
self.conv = conv_templates[self.conv_template].copy()
else:
self.conv = get_default_conv_template(self.model_path).copy()
class HuskyVQA:
def __init__(
self,
device
):
model_path="model_zoo/husky-7b-v0_01"
load_8bit=True
max_new_tokens=512
self.chat = Chat(
model_path=model_path,
device=device,
load_8bit=load_8bit,
max_new_tokens=max_new_tokens,
num_gpus=1,
)
# @prompts(name="Visual Question Answering or Image Caption",
# description="useful when you want to ask some questions about this image or generate a caption for it. "
# "like: describe this image in details, or what can you see in this image? "
# "The input to this tool should be a string like \"{image_path},{query}\", containing the image_path and user query.")
@prompts(name="Answer Question About The Image",
description="useful when you need an answer for a question based on an image. "
"like: what is the background color of this image, or how many cats in this figure "
"The input to this tool should be a comma separated string of two, representing the image_path and the question")
def inference(self, inputs):
print(f'inputs: {inputs}')
image_file = inputs.split(',')[0]
query = ','.join(inputs.split(',')[1:])
vision_feature = self.chat.get_image_embedding(image_file)
conversations = self.chat.ask(text=query, conv=self.chat.conv)
outputs = self.chat.answer(conversations, vision_feature)
# NOTE: strip is important to align with the training data.
self.chat.conv.messages[-1][1] = outputs.strip()
# print(f'HuskyVQA: {outputs}')
self.reset()
print(
f"\nProcessed HuskyVQA, Inputs: {inputs}. "
f"Output: {outputs}")
return outputs
@prompts(name="Get Photo Description",
description="useful when you want to know what is inside the photo. "
"like: describe this image in detail, what is it in this figure, "
"or introduce this image."
"The input to this tool should be a string, representing the image_path. ")
def inference_captioning(self, inputs):
print(f'inputs: {inputs}')
image_file = inputs.strip()
query = 'please describe this image in details'
vision_feature = self.chat.get_image_embedding(image_file)
conversations = self.chat.ask(text=query, conv=self.chat.conv)
outputs = self.chat.answer(conversations, vision_feature)
# NOTE: strip is important to align with the training data.
self.chat.conv.messages[-1][1] = outputs.strip()
self.reset()
print(
f"\nProcessed HuskyVQA captioning, Inputs: {inputs}. "
f"Output: {outputs}")
return outputs
@prompts(name="Answer Question About The Masked Image",
description="useful when you need an answer for a question based on a masked image. "
"like: what is the background color in the masked region, "
"how many cats in this masked figure or what is in this masked figure. "
"The input to this tool should be a comma separated string of three, "
"representing the image_path, mask_path and the question")
def inference_by_mask(self, inputs):
print(f'inputs: {inputs}')
image_path, mask_path = inputs.split(",")[0], inputs.split(",")[1]
question = ','.join(inputs.split(',')[2:])
# mask_path = self.SegmentAnything.inference_by_mask(image_path)
raw_image = Image.open(image_path).convert('RGB')
mask_image = Image.open(mask_path).convert('RGB')
new_image_arr = np.array(raw_image, dtype=np.uint8) // 255 * np.array(mask_image)
new_image = Image.fromarray(new_image_arr)
new_image_path = gen_new_name(image_path, '')
new_image.save(new_image_path, 'PNG')
answer = self.inference(f'{new_image_path},{question}')
self.reset()
print(f"\nProcessed HuskyVQA, Inputs: {inputs}, Input Question: {question}, "
f"Output Answer: {answer}")
return answer
def reset(self):
self.chat.reset()