|
''' |
|
* Tag2Text |
|
* Written by Xinyu Huang |
|
''' |
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
from .vit import VisionTransformer, interpolate_pos_embed |
|
from .swin_transformer import SwinTransformer, interpolate_relative_pos_embed |
|
from .med import BertConfig, BertModel, BertLMHeadModel |
|
from .utils import tra_array |
|
from transformers import BertTokenizer |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
import os |
|
from urllib.parse import urlparse |
|
from timm.models.hub import download_cached_file |
|
import json |
|
import math |
|
import numpy as np |
|
|
|
def read_json(rpath): |
|
with open(rpath, 'r') as f: |
|
return json.load(f) |
|
|
|
|
|
|
|
delete_tag_index = [127,2961, 3351, 3265, 3338, 3355, 3359] |
|
|
|
|
|
|
|
|
|
tag_thrshold = {2701:0.7, 2828: 0.7, 1167: 0.7} |
|
|
|
class Tag2Text_Caption(nn.Module): |
|
def __init__(self, |
|
med_config = 'configs/med_config.json', |
|
image_size = 384, |
|
vit = 'base', |
|
vit_grad_ckpt = False, |
|
vit_ckpt_layer = 0, |
|
prompt = 'a picture of ', |
|
threshold = 0.68, |
|
): |
|
""" |
|
Args: |
|
med_config (str): path for the mixture of encoder-decoder model's configuration file |
|
image_size (int): input image size |
|
vit (str): model size of vision transformer |
|
""" |
|
super().__init__() |
|
|
|
if vit=='swin_b': |
|
if image_size == 224: |
|
vision_config_path = 'configs/swin/config_swinB_224.json' |
|
elif image_size == 384: |
|
vision_config_path = 'configs/swin/config_swinB_384.json' |
|
vision_config = read_json(vision_config_path) |
|
assert image_size == vision_config['image_res'] |
|
|
|
vision_width = vision_config['vision_width'] |
|
|
|
self.visual_encoder = SwinTransformer(img_size=vision_config['image_res'], |
|
patch_size=4, |
|
in_chans=3, |
|
embed_dim=vision_config['embed_dim'], |
|
depths=vision_config['depths'], |
|
num_heads=vision_config['num_heads'], |
|
window_size=vision_config['window_size'], |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
drop_rate=0.0, |
|
drop_path_rate=0.1, |
|
ape=False, |
|
patch_norm=True, |
|
use_checkpoint=False) |
|
|
|
else: |
|
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) |
|
|
|
|
|
self.tokenizer = init_tokenizer() |
|
|
|
|
|
decoder_config = BertConfig.from_json_file(med_config) |
|
decoder_config.encoder_width = 768 |
|
self.text_decoder = BertLMHeadModel(config=decoder_config) |
|
|
|
|
|
encoder_config = BertConfig.from_json_file(med_config) |
|
encoder_config.encoder_width = vision_width |
|
self.tag_encoder = BertModel(config=encoder_config, add_pooling_layer=False) |
|
|
|
self.prompt = prompt |
|
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1 |
|
|
|
self.threshold = threshold |
|
num_features = 768 |
|
self.num_class = 3429 |
|
|
|
q2l_config = BertConfig.from_json_file('configs/q2l_config.json') |
|
q2l_config.encoder_width = vision_width |
|
self.vision_multi = BertModel(config=q2l_config, add_pooling_layer=False) |
|
self.vision_multi.resize_token_embeddings(len(self.tokenizer)) |
|
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size) |
|
self.fc = GroupWiseLinear(self.num_class, num_features, bias=True) |
|
self.del_selfattention() |
|
|
|
tie_encoder_decoder_weights(self.tag_encoder,self.vision_multi,'',' ') |
|
self.tag_array = tra_array |
|
|
|
self.class_threshold = torch.ones(self.num_class) * self.threshold |
|
for key,value in tag_thrshold.items(): |
|
self.class_threshold[key] = value |
|
|
|
def del_selfattention(self): |
|
del self.vision_multi.embeddings |
|
for layer in self.vision_multi.encoder.layer: |
|
del layer.attention |
|
|
|
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0, tag_input = None, return_tag_predict = False): |
|
image_embeds = self.visual_encoder(image) |
|
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) |
|
|
|
|
|
if tag_input == None: |
|
image_spatial_embeds = image_embeds[:,1:,:] |
|
image_cls_embeds = image_embeds[:,0,:] |
|
|
|
bs = image_spatial_embeds.shape[0] |
|
label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs,1,1) |
|
mlr_tagembedding = self.vision_multi(encoder_embeds = label_embed, |
|
encoder_hidden_states = image_embeds, |
|
encoder_attention_mask = image_atts, |
|
return_dict = False, |
|
mode = 'mlr', |
|
) |
|
|
|
logits = self.fc(mlr_tagembedding[0]) |
|
|
|
|
|
targets = torch.where(torch.sigmoid(logits) > self.class_threshold.to(image.device) , torch.tensor(1.0).to(image.device), torch.zeros(self.num_class).to(image.device)) |
|
|
|
tag = targets.cpu().numpy() |
|
tag[:,delete_tag_index] = 0 |
|
bs = image.size(0) |
|
tag_input = [] |
|
for b in range(bs): |
|
index = np.argwhere(tag[b] == 1) |
|
token = self.tag_array[index].squeeze(axis = 1) |
|
tag_input.append(' | '.join(token)) |
|
|
|
|
|
if not sample: |
|
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0) |
|
image_atts = image_atts.repeat_interleave(num_beams,dim=0) |
|
tag_input_temp = [] |
|
for tag in tag_input: |
|
for i in range(num_beams): |
|
tag_input_temp.append(tag) |
|
tag_input = tag_input_temp |
|
|
|
|
|
tag_input_tokenzier = self.tokenizer(tag_input, padding='max_length', truncation=True, max_length=40, |
|
return_tensors="pt").to(image.device) |
|
encoder_input_ids = tag_input_tokenzier.input_ids |
|
encoder_input_ids[:,0] = self.tokenizer.enc_token_id |
|
|
|
output_tagembedding = self.tag_encoder(encoder_input_ids, |
|
attention_mask = tag_input_tokenzier.attention_mask, |
|
encoder_hidden_states = image_embeds, |
|
encoder_attention_mask = image_atts, |
|
return_dict = True, |
|
) |
|
|
|
prompt = [self.prompt] * image.size(0) |
|
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) |
|
input_ids[:,0] = self.tokenizer.bos_token_id |
|
input_ids = input_ids[:, :-1] |
|
|
|
if sample: |
|
|
|
model_kwargs = {"encoder_hidden_states": output_tagembedding.last_hidden_state, "encoder_attention_mask":None} |
|
outputs = self.text_decoder.generate(input_ids=input_ids, |
|
max_length=max_length, |
|
min_length=min_length, |
|
do_sample=True, |
|
top_p=top_p, |
|
num_return_sequences=1, |
|
eos_token_id=self.tokenizer.sep_token_id, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
repetition_penalty=1.1, |
|
**model_kwargs) |
|
else: |
|
|
|
model_kwargs = {"encoder_hidden_states": output_tagembedding.last_hidden_state, "encoder_attention_mask":None} |
|
outputs = self.text_decoder.generate(input_ids=input_ids, |
|
max_length=max_length, |
|
min_length=min_length, |
|
num_beams=num_beams, |
|
eos_token_id=self.tokenizer.sep_token_id, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
repetition_penalty=repetition_penalty, |
|
**model_kwargs) |
|
|
|
captions = [] |
|
for output in outputs: |
|
caption = self.tokenizer.decode(output, skip_special_tokens=True) |
|
captions.append(caption[len(self.prompt):]) |
|
if return_tag_predict == True: |
|
if sample: |
|
return captions, tag_input |
|
else: |
|
return captions, tag_input[0:int(len(tag_input)/num_beams)] |
|
return captions |
|
|
|
|
|
def tag2text_caption(pretrained='',**kwargs): |
|
model = Tag2Text_Caption(**kwargs) |
|
if pretrained: |
|
if kwargs['vit'] == 'swin_b': |
|
model,msg = load_checkpoint_swinbase(model,pretrained,kwargs) |
|
else: |
|
model,msg = load_checkpoint(model,pretrained) |
|
|
|
|
|
return model |
|
|
|
|
|
from typing import List |
|
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str): |
|
uninitialized_encoder_weights: List[str] = [] |
|
if decoder.__class__ != encoder.__class__: |
|
logger.info( |
|
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized." |
|
) |
|
|
|
def tie_encoder_to_decoder_recursively( |
|
decoder_pointer: nn.Module, |
|
encoder_pointer: nn.Module, |
|
module_name: str, |
|
uninitialized_encoder_weights: List[str], |
|
skip_key: str, |
|
depth=0, |
|
): |
|
assert isinstance(decoder_pointer, nn.Module) and isinstance( |
|
encoder_pointer, nn.Module |
|
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module" |
|
if hasattr(decoder_pointer, "weight") and skip_key not in module_name: |
|
assert hasattr(encoder_pointer, "weight") |
|
encoder_pointer.weight = decoder_pointer.weight |
|
if hasattr(decoder_pointer, "bias"): |
|
assert hasattr(encoder_pointer, "bias") |
|
encoder_pointer.bias = decoder_pointer.bias |
|
|
|
return |
|
|
|
encoder_modules = encoder_pointer._modules |
|
decoder_modules = decoder_pointer._modules |
|
if len(decoder_modules) > 0: |
|
assert ( |
|
len(encoder_modules) > 0 |
|
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}" |
|
|
|
all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()]) |
|
encoder_layer_pos = 0 |
|
for name, module in decoder_modules.items(): |
|
if name.isdigit(): |
|
encoder_name = str(int(name) + encoder_layer_pos) |
|
decoder_name = name |
|
if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len( |
|
encoder_modules |
|
) != len(decoder_modules): |
|
|
|
|
|
|
|
encoder_layer_pos -= 1 |
|
continue |
|
elif name not in encoder_modules: |
|
continue |
|
elif depth > 500: |
|
raise ValueError( |
|
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model." |
|
) |
|
else: |
|
decoder_name = encoder_name = name |
|
tie_encoder_to_decoder_recursively( |
|
decoder_modules[decoder_name], |
|
encoder_modules[encoder_name], |
|
module_name + "/" + name, |
|
uninitialized_encoder_weights, |
|
skip_key, |
|
depth=depth + 1, |
|
) |
|
all_encoder_weights.remove(module_name + "/" + encoder_name) |
|
|
|
uninitialized_encoder_weights += list(all_encoder_weights) |
|
|
|
|
|
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key) |
|
|
|
|
|
class GroupWiseLinear(nn.Module): |
|
|
|
|
|
|
|
def __init__(self, num_class, hidden_dim, bias=True): |
|
super().__init__() |
|
self.num_class = num_class |
|
self.hidden_dim = hidden_dim |
|
self.bias = bias |
|
|
|
self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim)) |
|
if bias: |
|
self.b = nn.Parameter(torch.Tensor(1, num_class)) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
stdv = 1. / math.sqrt(self.W.size(2)) |
|
for i in range(self.num_class): |
|
self.W[0][i].data.uniform_(-stdv, stdv) |
|
if self.bias: |
|
for i in range(self.num_class): |
|
self.b[0][i].data.uniform_(-stdv, stdv) |
|
|
|
def forward(self, x): |
|
|
|
x = (self.W * x).sum(-1) |
|
if self.bias: |
|
x = x + self.b |
|
return x |
|
|
|
|
|
def init_tokenizer(): |
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
tokenizer.add_special_tokens({'bos_token':'[DEC]'}) |
|
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']}) |
|
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] |
|
return tokenizer |
|
|
|
|
|
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0): |
|
|
|
assert vit in ['base', 'large'], "vit parameter must be base or large" |
|
if vit=='base': |
|
vision_width = 768 |
|
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, |
|
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, |
|
drop_path_rate=0 or drop_path_rate |
|
) |
|
elif vit=='large': |
|
vision_width = 1024 |
|
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, |
|
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, |
|
drop_path_rate=0.1 or drop_path_rate |
|
) |
|
return visual_encoder, vision_width |
|
|
|
def is_url(url_or_filename): |
|
parsed = urlparse(url_or_filename) |
|
return parsed.scheme in ("http", "https") |
|
|
|
def load_checkpoint(model,url_or_filename): |
|
if is_url(url_or_filename): |
|
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) |
|
checkpoint = torch.load(cached_file, map_location='cpu') |
|
elif os.path.isfile(url_or_filename): |
|
checkpoint = torch.load(url_or_filename, map_location='cpu') |
|
else: |
|
raise RuntimeError('checkpoint url or path is invalid') |
|
|
|
state_dict = checkpoint['model'] |
|
|
|
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) |
|
if 'visual_encoder_m.pos_embed' in model.state_dict().keys(): |
|
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], |
|
model.visual_encoder_m) |
|
for key in model.state_dict().keys(): |
|
if key in state_dict.keys(): |
|
if state_dict[key].shape!=model.state_dict()[key].shape: |
|
del state_dict[key] |
|
|
|
msg = model.load_state_dict(state_dict,strict=False) |
|
print('load checkpoint from %s'%url_or_filename) |
|
return model,msg |
|
|
|
|
|
def load_checkpoint_swinbase(model,url_or_filename,kwargs): |
|
if kwargs['image_size'] == 224: |
|
vision_config_path = 'configs/swin/config_swinB_224.json' |
|
elif kwargs['image_size'] == 384: |
|
vision_config_path = 'configs/swin/config_swinB_384.json' |
|
elif kwargs['image_size'] == 480: |
|
vision_config_path = 'configs/swin/config_swinB_480.json' |
|
elif kwargs['image_size'] == 576: |
|
vision_config_path = 'configs/swin/config_swinB_576.json' |
|
elif kwargs['image_size'] == 608: |
|
vision_config_path = 'configs/swin/config_swinB_608.json' |
|
window_size = read_json(vision_config_path)['window_size'] |
|
|
|
|
|
|
|
if is_url(url_or_filename): |
|
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) |
|
checkpoint = torch.load(cached_file, map_location='cpu') |
|
elif os.path.isfile(url_or_filename): |
|
checkpoint = torch.load(url_or_filename, map_location='cpu') |
|
else: |
|
raise RuntimeError('checkpoint url or path is invalid') |
|
|
|
state_dict = checkpoint['model'] |
|
|
|
for k in list(state_dict.keys()): |
|
if 'relative_position_bias_table' in k: |
|
dst_num_pos = (2 * window_size - 1) ** 2 |
|
state_dict[k] = interpolate_relative_pos_embed(state_dict[k], dst_num_pos, param_name=k) |
|
elif ('relative_position_index' in k) or ('attn_mask' in k): |
|
del state_dict[k] |
|
|
|
msg = model.load_state_dict(state_dict,strict=False) |
|
print('load checkpoint from %s'%url_or_filename) |
|
return model,msg |
|
|
|
|
|
|
|
|
|
|
|
|