InternGPT / iGPT /models /tag2text.py
laizeqiang
update
ee25e9d
raw
history blame
19.4 kB
'''
* Tag2Text
* Written by Xinyu Huang
'''
import warnings
warnings.filterwarnings("ignore")
from .vit import VisionTransformer, interpolate_pos_embed
from .swin_transformer import SwinTransformer, interpolate_relative_pos_embed
from .med import BertConfig, BertModel, BertLMHeadModel
from .utils import tra_array
from transformers import BertTokenizer
import torch
from torch import nn
import torch.nn.functional as F
import os
from urllib.parse import urlparse
from timm.models.hub import download_cached_file
import json
import math
import numpy as np
def read_json(rpath):
with open(rpath, 'r') as f:
return json.load(f)
# delete some tags that may disturb captioning
# 127: "quarter"; 2961: "back"; 3351: "two"; 3265: "three"; 3338: "four"; 3355: "five"; 3359: "one"
delete_tag_index = [127,2961, 3351, 3265, 3338, 3355, 3359]
# adjust thresholds for some tags
# default threshold: 0.68
# 2701: "person"; 2828: "man"; 1167: "woman";
tag_thrshold = {2701:0.7, 2828: 0.7, 1167: 0.7}
class Tag2Text_Caption(nn.Module):
def __init__(self,
med_config = 'configs/med_config.json',
image_size = 384,
vit = 'base',
vit_grad_ckpt = False,
vit_ckpt_layer = 0,
prompt = 'a picture of ',
threshold = 0.68,
):
"""
Args:
med_config (str): path for the mixture of encoder-decoder model's configuration file
image_size (int): input image size
vit (str): model size of vision transformer
"""
super().__init__()
if vit=='swin_b':
if image_size == 224:
vision_config_path = 'configs/swin/config_swinB_224.json'
elif image_size == 384:
vision_config_path = 'configs/swin/config_swinB_384.json'
vision_config = read_json(vision_config_path)
assert image_size == vision_config['image_res']
# assert config['patch_size'] == 32
vision_width = vision_config['vision_width']
self.visual_encoder = SwinTransformer(img_size=vision_config['image_res'],
patch_size=4,
in_chans=3,
embed_dim=vision_config['embed_dim'],
depths=vision_config['depths'],
num_heads=vision_config['num_heads'],
window_size=vision_config['window_size'],
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.0,
drop_path_rate=0.1,
ape=False,
patch_norm=True,
use_checkpoint=False)
else:
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
self.tokenizer = init_tokenizer()
# create the decoder
decoder_config = BertConfig.from_json_file(med_config)
decoder_config.encoder_width = 768
self.text_decoder = BertLMHeadModel(config=decoder_config)
# create encoder
encoder_config = BertConfig.from_json_file(med_config)
encoder_config.encoder_width = vision_width
self.tag_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
self.prompt = prompt
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
self.threshold = threshold
num_features = 768
self.num_class = 3429
q2l_config = BertConfig.from_json_file('configs/q2l_config.json')
q2l_config.encoder_width = vision_width
self.vision_multi = BertModel(config=q2l_config, add_pooling_layer=False)
self.vision_multi.resize_token_embeddings(len(self.tokenizer))
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
self.fc = GroupWiseLinear(self.num_class, num_features, bias=True)
self.del_selfattention()
tie_encoder_decoder_weights(self.tag_encoder,self.vision_multi,'',' ')
self.tag_array = tra_array
self.class_threshold = torch.ones(self.num_class) * self.threshold
for key,value in tag_thrshold.items():
self.class_threshold[key] = value
def del_selfattention(self):
del self.vision_multi.embeddings
for layer in self.vision_multi.encoder.layer:
del layer.attention
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0, tag_input = None, return_tag_predict = False):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
#==============generate tag==============#
if tag_input == None:
image_spatial_embeds = image_embeds[:,1:,:]
image_cls_embeds = image_embeds[:,0,:]
bs = image_spatial_embeds.shape[0]
label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs,1,1)
mlr_tagembedding = self.vision_multi(encoder_embeds = label_embed,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = False,
mode = 'mlr',
)
logits = self.fc(mlr_tagembedding[0])
# targets = torch.where(torch.sigmoid(logits) > self.threshold , torch.tensor(1.0).to(image.device), torch.zeros(self.num_class).to(image.device))
targets = torch.where(torch.sigmoid(logits) > self.class_threshold.to(image.device) , torch.tensor(1.0).to(image.device), torch.zeros(self.num_class).to(image.device))
tag = targets.cpu().numpy()
tag[:,delete_tag_index] = 0
bs = image.size(0)
tag_input = []
for b in range(bs):
index = np.argwhere(tag[b] == 1)
token = self.tag_array[index].squeeze(axis = 1)
tag_input.append(' | '.join(token))
#========================================#
if not sample:
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
image_atts = image_atts.repeat_interleave(num_beams,dim=0)
tag_input_temp = []
for tag in tag_input:
for i in range(num_beams):
tag_input_temp.append(tag)
tag_input = tag_input_temp
tag_input_tokenzier = self.tokenizer(tag_input, padding='max_length', truncation=True, max_length=40,
return_tensors="pt").to(image.device)
encoder_input_ids = tag_input_tokenzier.input_ids
encoder_input_ids[:,0] = self.tokenizer.enc_token_id
output_tagembedding = self.tag_encoder(encoder_input_ids,
attention_mask = tag_input_tokenzier.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True,
)
prompt = [self.prompt] * image.size(0)
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device)
input_ids[:,0] = self.tokenizer.bos_token_id
input_ids = input_ids[:, :-1]
if sample:
#nucleus sampling
model_kwargs = {"encoder_hidden_states": output_tagembedding.last_hidden_state, "encoder_attention_mask":None}
outputs = self.text_decoder.generate(input_ids=input_ids,
max_length=max_length,
min_length=min_length,
do_sample=True,
top_p=top_p,
num_return_sequences=1,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
repetition_penalty=1.1,
**model_kwargs)
else:
#beam search
model_kwargs = {"encoder_hidden_states": output_tagembedding.last_hidden_state, "encoder_attention_mask":None}
outputs = self.text_decoder.generate(input_ids=input_ids,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs)
captions = []
for output in outputs:
caption = self.tokenizer.decode(output, skip_special_tokens=True)
captions.append(caption[len(self.prompt):])
if return_tag_predict == True:
if sample:
return captions, tag_input
else:
return captions, tag_input[0:int(len(tag_input)/num_beams)]
return captions
def tag2text_caption(pretrained='',**kwargs):
model = Tag2Text_Caption(**kwargs)
if pretrained:
if kwargs['vit'] == 'swin_b':
model,msg = load_checkpoint_swinbase(model,pretrained,kwargs)
else:
model,msg = load_checkpoint(model,pretrained)
# print('vit:',kwargs['vit'])
# print('msg_v2',msg)
return model
from typing import List
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
uninitialized_encoder_weights: List[str] = []
if decoder.__class__ != encoder.__class__:
logger.info(
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
)
def tie_encoder_to_decoder_recursively(
decoder_pointer: nn.Module,
encoder_pointer: nn.Module,
module_name: str,
uninitialized_encoder_weights: List[str],
skip_key: str,
depth=0,
):
assert isinstance(decoder_pointer, nn.Module) and isinstance(
encoder_pointer, nn.Module
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
assert hasattr(encoder_pointer, "weight")
encoder_pointer.weight = decoder_pointer.weight
if hasattr(decoder_pointer, "bias"):
assert hasattr(encoder_pointer, "bias")
encoder_pointer.bias = decoder_pointer.bias
# print(module_name+' is tied')
return
encoder_modules = encoder_pointer._modules
decoder_modules = decoder_pointer._modules
if len(decoder_modules) > 0:
assert (
len(encoder_modules) > 0
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
encoder_layer_pos = 0
for name, module in decoder_modules.items():
if name.isdigit():
encoder_name = str(int(name) + encoder_layer_pos)
decoder_name = name
if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
encoder_modules
) != len(decoder_modules):
# this can happen if the name corresponds to the position in a list module list of layers
# in this case the decoder has added a cross-attention that the encoder does not have
# thus skip this step and subtract one layer pos from encoder
encoder_layer_pos -= 1
continue
elif name not in encoder_modules:
continue
elif depth > 500:
raise ValueError(
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
)
else:
decoder_name = encoder_name = name
tie_encoder_to_decoder_recursively(
decoder_modules[decoder_name],
encoder_modules[encoder_name],
module_name + "/" + name,
uninitialized_encoder_weights,
skip_key,
depth=depth + 1,
)
all_encoder_weights.remove(module_name + "/" + encoder_name)
uninitialized_encoder_weights += list(all_encoder_weights)
# tie weights recursively
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)
class GroupWiseLinear(nn.Module):
# could be changed to:
# output = torch.einsum('ijk,zjk->ij', x, self.W)
# or output = torch.einsum('ijk,jk->ij', x, self.W[0])
def __init__(self, num_class, hidden_dim, bias=True):
super().__init__()
self.num_class = num_class
self.hidden_dim = hidden_dim
self.bias = bias
self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim))
if bias:
self.b = nn.Parameter(torch.Tensor(1, num_class))
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.W.size(2))
for i in range(self.num_class):
self.W[0][i].data.uniform_(-stdv, stdv)
if self.bias:
for i in range(self.num_class):
self.b[0][i].data.uniform_(-stdv, stdv)
def forward(self, x):
# x: B,K,d
x = (self.W * x).sum(-1)
if self.bias:
x = x + self.b
return x
def init_tokenizer():
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer.add_special_tokens({'bos_token':'[DEC]'})
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
return tokenizer
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
assert vit in ['base', 'large'], "vit parameter must be base or large"
if vit=='base':
vision_width = 768
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
drop_path_rate=0 or drop_path_rate
)
elif vit=='large':
vision_width = 1024
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
drop_path_rate=0.1 or drop_path_rate
)
return visual_encoder, vision_width
def is_url(url_or_filename):
parsed = urlparse(url_or_filename)
return parsed.scheme in ("http", "https")
def load_checkpoint(model,url_or_filename):
if is_url(url_or_filename):
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
checkpoint = torch.load(cached_file, map_location='cpu')
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location='cpu')
else:
raise RuntimeError('checkpoint url or path is invalid')
state_dict = checkpoint['model']
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
model.visual_encoder_m)
for key in model.state_dict().keys():
if key in state_dict.keys():
if state_dict[key].shape!=model.state_dict()[key].shape:
del state_dict[key]
msg = model.load_state_dict(state_dict,strict=False)
print('load checkpoint from %s'%url_or_filename)
return model,msg
def load_checkpoint_swinbase(model,url_or_filename,kwargs):
if kwargs['image_size'] == 224:
vision_config_path = 'configs/swin/config_swinB_224.json'
elif kwargs['image_size'] == 384:
vision_config_path = 'configs/swin/config_swinB_384.json'
elif kwargs['image_size'] == 480:
vision_config_path = 'configs/swin/config_swinB_480.json'
elif kwargs['image_size'] == 576:
vision_config_path = 'configs/swin/config_swinB_576.json'
elif kwargs['image_size'] == 608:
vision_config_path = 'configs/swin/config_swinB_608.json'
window_size = read_json(vision_config_path)['window_size']
# print('--------------')
# print(url_or_filename)
# print('--------------')
if is_url(url_or_filename):
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
checkpoint = torch.load(cached_file, map_location='cpu')
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location='cpu')
else:
raise RuntimeError('checkpoint url or path is invalid')
state_dict = checkpoint['model']
for k in list(state_dict.keys()):
if 'relative_position_bias_table' in k:
dst_num_pos = (2 * window_size - 1) ** 2
state_dict[k] = interpolate_relative_pos_embed(state_dict[k], dst_num_pos, param_name=k)
elif ('relative_position_index' in k) or ('attn_mask' in k):
del state_dict[k]
msg = model.load_state_dict(state_dict,strict=False)
print('load checkpoint from %s'%url_or_filename)
return model,msg