InternGPT / iGPT /models /grit_model.py
laizeqiang
update
ee25e9d
raw
history blame
1.57 kB
import os
import sys
from .grit_src.image_dense_captions import image_caption_api, init_demo, dense_pred_to_caption, dense_pred_to_caption_only_name
from detectron2.data.detection_utils import read_image
class DenseCaptioning():
def __init__(self, device):
self.device = device
self.demo = None
def initialize_model(self):
self.demo = init_demo(self.device)
def image_dense_caption_debug(self, image_src):
dense_caption = """
1. the broccoli is green, [0, 0, 333, 325];
2. a piece of broccoli, [0, 147, 143, 324];
3. silver fork on plate, [4, 547, 252, 612];
"""
return dense_caption
def image_dense_caption(self, image_src):
dense_caption = image_caption_api(image_src, self.device)
print('\033[1;35m' + '*' * 100 + '\033[0m')
print("Step2, Dense Caption:\n")
print(dense_caption)
print('\033[1;35m' + '*' * 100 + '\033[0m')
return dense_caption
def run_caption_api(self,image_src):
img = read_image(image_src, format="BGR")
print(img.shape)
predictions, visualized_output = self.demo.run_on_image(img)
new_caption = dense_pred_to_caption_only_name(predictions)
return new_caption
def run_caption_tensor(self,img):
# img = read_image(image_src, format="BGR")
# print(img.shape)
predictions, visualized_output = self.demo.run_on_image(img)
new_caption = dense_pred_to_caption_only_name(predictions)
return new_caption