|
import os |
|
from pathlib import Path |
|
|
|
import hydra |
|
import torch |
|
import yaml |
|
from omegaconf import OmegaConf |
|
from torch import nn |
|
|
|
from saicinpainting.training.trainers import load_checkpoint |
|
from saicinpainting.utils import register_debug_signal_handlers |
|
|
|
|
|
class JITWrapper(nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.model = model |
|
|
|
def forward(self, image, mask): |
|
batch = { |
|
"image": image, |
|
"mask": mask |
|
} |
|
out = self.model(batch) |
|
return out["inpainted"] |
|
|
|
|
|
@hydra.main(config_path="../configs/prediction", config_name="default.yaml") |
|
def main(predict_config: OmegaConf): |
|
register_debug_signal_handlers() |
|
|
|
train_config_path = os.path.join(predict_config.model.path, "config.yaml") |
|
with open(train_config_path, "r") as f: |
|
train_config = OmegaConf.create(yaml.safe_load(f)) |
|
|
|
train_config.training_model.predict_only = True |
|
train_config.visualizer.kind = "noop" |
|
|
|
checkpoint_path = os.path.join( |
|
predict_config.model.path, "models", predict_config.model.checkpoint |
|
) |
|
model = load_checkpoint( |
|
train_config, checkpoint_path, strict=False, map_location="cpu" |
|
) |
|
model.eval() |
|
jit_model_wrapper = JITWrapper(model) |
|
|
|
image = torch.rand(1, 3, 120, 120) |
|
mask = torch.rand(1, 1, 120, 120) |
|
output = jit_model_wrapper(image, mask) |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
image = image.to(device) |
|
mask = mask.to(device) |
|
traced_model = torch.jit.trace(jit_model_wrapper, (image, mask), strict=False).to(device) |
|
|
|
save_path = Path(predict_config.save_path) |
|
save_path.parent.mkdir(parents=True, exist_ok=True) |
|
|
|
print(f"Saving big-lama.pt model to {save_path}") |
|
traced_model.save(save_path) |
|
|
|
print(f"Checking jit model output...") |
|
jit_model = torch.jit.load(str(save_path)) |
|
jit_output = jit_model(image, mask) |
|
diff = (output - jit_output).abs().sum() |
|
print(f"diff: {diff}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|