|
|
|
import os |
|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset |
|
from saicinpainting.evaluation.utils import load_yaml |
|
from saicinpainting.training.visualizers.base import visualize_mask_and_images |
|
|
|
|
|
def main(args): |
|
config = load_yaml(args.config) |
|
|
|
datasets = [PrecomputedInpaintingResultsDataset(args.datadir, cur_predictdir, **config.dataset_kwargs) |
|
for cur_predictdir in args.predictdirs] |
|
assert len({len(ds) for ds in datasets}) == 1 |
|
len_first = len(datasets[0]) |
|
|
|
indices = list(range(len_first)) |
|
if len_first > args.max_n: |
|
indices = sorted(random.sample(indices, args.max_n)) |
|
|
|
os.makedirs(args.outpath, exist_ok=True) |
|
|
|
filename2i = {} |
|
|
|
keys = ['image'] + [i for i in range(len(datasets))] |
|
for img_i in indices: |
|
try: |
|
mask_fname = os.path.basename(datasets[0].mask_filenames[img_i]) |
|
if mask_fname in filename2i: |
|
filename2i[mask_fname] += 1 |
|
idx = filename2i[mask_fname] |
|
mask_fname_only, ext = os.path.split(mask_fname) |
|
mask_fname = f'{mask_fname_only}_{idx}{ext}' |
|
else: |
|
filename2i[mask_fname] = 1 |
|
|
|
cur_vis_dict = datasets[0][img_i] |
|
for ds_i, ds in enumerate(datasets): |
|
cur_vis_dict[ds_i] = ds[img_i]['inpainted'] |
|
|
|
vis_img = visualize_mask_and_images(cur_vis_dict, keys, |
|
last_without_mask=False, |
|
mask_only_first=True, |
|
black_mask=args.black) |
|
vis_img = np.clip(vis_img * 255, 0, 255).astype('uint8') |
|
|
|
out_fname = os.path.join(args.outpath, mask_fname) |
|
|
|
|
|
|
|
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_RGB2BGR) |
|
cv2.imwrite(out_fname, vis_img) |
|
except Exception as ex: |
|
print(f'Could not process {img_i} due to {ex}') |
|
|
|
|
|
if __name__ == '__main__': |
|
import argparse |
|
|
|
aparser = argparse.ArgumentParser() |
|
aparser.add_argument('--max-n', type=int, default=100, help='Maximum number of images to print') |
|
aparser.add_argument('--black', action='store_true', help='Whether to fill mask on GT with black') |
|
aparser.add_argument('config', type=str, help='Path to evaluation config (e.g. configs/eval1.yaml)') |
|
aparser.add_argument('outpath', type=str, help='Where to put results') |
|
aparser.add_argument('datadir', type=str, |
|
help='Path to folder with images and masks') |
|
aparser.add_argument('predictdirs', type=str, |
|
nargs='+', |
|
help='Path to folders with predicts') |
|
|
|
|
|
main(aparser.parse_args()) |
|
|