Spaces:
Sleeping
Sleeping
| from typing import List, Dict, Any, Tuple, Union | |
| from collections import namedtuple | |
| import torch | |
| import copy | |
| from ding.torch_utils import Adam, to_device | |
| from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample | |
| from ding.model import model_wrap | |
| from ding.utils import POLICY_REGISTRY | |
| from ding.utils.data import default_collate, default_decollate | |
| from .base_policy import Policy | |
| from .common_utils import default_preprocess_learn | |
| class DDPGPolicy(Policy): | |
| """ | |
| Overview: | |
| Policy class of DDPG algorithm. Paper link: https://arxiv.org/abs/1509.02971. | |
| Config: | |
| == ==================== ======== ============= ================================= ======================= | |
| ID Symbol Type Default Value Description Other(Shape) | |
| == ==================== ======== ============= ================================= ======================= | |
| 1 | ``type`` str ddpg | RL policy register name, refer | this arg is optional, | |
| | | to registry ``POLICY_REGISTRY`` | a placeholder | |
| 2 | ``cuda`` bool False | Whether to use cuda for network | | |
| 3 | ``random_`` int 25000 | Number of randomly collected | Default to 25000 for | |
| | ``collect_size`` | training samples in replay | DDPG/TD3, 10000 for | |
| | | buffer when training starts. | sac. | |
| 4 | ``model.twin_`` bool False | Whether to use two critic | Default False for | |
| | ``critic`` | networks or only one. | DDPG, Clipped Double | |
| | | | Q-learning method in | |
| | | | TD3 paper. | |
| 5 | ``learn.learning`` float 1e-3 | Learning rate for actor | | |
| | ``_rate_actor`` | network(aka. policy). | | |
| 6 | ``learn.learning`` float 1e-3 | Learning rates for critic | | |
| | ``_rate_critic`` | network (aka. Q-network). | | |
| 7 | ``learn.actor_`` int 2 | When critic network updates | Default 1 for DDPG, | |
| | ``update_freq`` | once, how many times will actor | 2 for TD3. Delayed | |
| | | network update. | Policy Updates method | |
| | | | in TD3 paper. | |
| 8 | ``learn.noise`` bool False | Whether to add noise on target | Default False for | |
| | | network's action. | DDPG, True for TD3. | |
| | | | Target Policy Smoo- | |
| | | | thing Regularization | |
| | | | in TD3 paper. | |
| 9 | ``learn.-`` bool False | Determine whether to ignore | Use ignore_done only | |
| | ``ignore_done`` | done flag. | in halfcheetah env. | |
| 10 | ``learn.-`` float 0.005 | Used for soft update of the | aka. Interpolation | |
| | ``target_theta`` | target network. | factor in polyak aver- | |
| | | | aging for target | |
| | | | networks. | |
| 11 | ``collect.-`` float 0.1 | Used for add noise during co- | Sample noise from dis- | |
| | ``noise_sigma`` | llection, through controlling | tribution, Ornstein- | |
| | | the sigma of distribution | Uhlenbeck process in | |
| | | | DDPG paper, Gaussian | |
| | | | process in ours. | |
| == ==================== ======== ============= ================================= ======================= | |
| """ | |
| config = dict( | |
| # (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
| type='ddpg', | |
| # (bool) Whether to use cuda in policy. | |
| cuda=False, | |
| # (bool) Whether learning policy is the same as collecting data policy(on-policy). Default False in DDPG. | |
| on_policy=False, | |
| # (bool) Whether to enable priority experience sample. | |
| priority=False, | |
| # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
| priority_IS_weight=False, | |
| # (int) Number of training samples(randomly collected) in replay buffer when training starts. | |
| # Default 25000 in DDPG/TD3. | |
| random_collect_size=25000, | |
| # (bool) Whether to need policy data in process transition. | |
| transition_with_policy_data=False, | |
| # (str) Action space type, including ['continuous', 'hybrid']. | |
| action_space='continuous', | |
| # (bool) Whether use batch normalization for reward. | |
| reward_batch_norm=False, | |
| # (bool) Whether to enable multi-agent training setting. | |
| multi_agent=False, | |
| # learn_mode config | |
| learn=dict( | |
| # (int) How many updates(iterations) to train after collector's one collection. | |
| # Bigger "update_per_collect" means bigger off-policy. | |
| # collect data -> update policy-> collect data -> ... | |
| update_per_collect=1, | |
| # (int) Minibatch size for gradient descent. | |
| batch_size=256, | |
| # (float) Learning rates for actor network(aka. policy). | |
| learning_rate_actor=1e-3, | |
| # (float) Learning rates for critic network(aka. Q-network). | |
| learning_rate_critic=1e-3, | |
| # (bool) Whether ignore done(usually for max step termination env. e.g. pendulum) | |
| # Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers. | |
| # These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000. | |
| # However, interaction with HalfCheetah always gets done with False, | |
| # Since we inplace done==True with done==False to keep | |
| # TD-error accurate computation(``gamma * (1 - done) * next_v + reward``), | |
| # when the episode step is greater than max episode step. | |
| ignore_done=False, | |
| # (float) target_theta: Used for soft update of the target network, | |
| # aka. Interpolation factor in polyak averaging for target networks. | |
| # Default to 0.005. | |
| target_theta=0.005, | |
| # (float) discount factor for the discounted sum of rewards, aka. gamma. | |
| discount_factor=0.99, | |
| # (int) When critic network updates once, how many times will actor network update. | |
| # Delayed Policy Updates in original TD3 paper(https://arxiv.org/pdf/1802.09477.pdf). | |
| # Default 1 for DDPG, 2 for TD3. | |
| actor_update_freq=1, | |
| # (bool) Whether to add noise on target network's action. | |
| # Target Policy Smoothing Regularization in original TD3 paper(https://arxiv.org/pdf/1802.09477.pdf). | |
| # Default True for TD3, False for DDPG. | |
| noise=False, | |
| ), | |
| # collect_mode config | |
| collect=dict( | |
| # (int) How many training samples collected in one collection procedure. | |
| # Only one of [n_sample, n_episode] shoule be set. | |
| # n_sample=1, | |
| # (int) Split episodes or trajectories into pieces with length `unroll_len`. | |
| unroll_len=1, | |
| # (float) It is a must to add noise during collection. So here omits "noise" and only set "noise_sigma". | |
| noise_sigma=0.1, | |
| ), | |
| eval=dict(), # for compability | |
| other=dict( | |
| replay_buffer=dict( | |
| # (int) Maximum size of replay buffer. Usually, larger buffer size is better. | |
| replay_buffer_size=100000, | |
| ), | |
| ), | |
| ) | |
| def default_model(self) -> Tuple[str, List[str]]: | |
| """ | |
| Overview: | |
| Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ | |
| automatically call this method to get the default model setting and create model. | |
| Returns: | |
| - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. | |
| """ | |
| if self._cfg.multi_agent: | |
| return 'continuous_maqac', ['ding.model.template.maqac'] | |
| else: | |
| return 'continuous_qac', ['ding.model.template.qac'] | |
| def _init_learn(self) -> None: | |
| """ | |
| Overview: | |
| Initialize the learn mode of policy, including related attributes and modules. For DDPG, it mainly \ | |
| contains two optimizers, algorithm-specific arguments such as gamma and twin_critic, main and target model. | |
| This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
| .. note:: | |
| For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
| and ``_load_state_dict_learn`` methods. | |
| .. note:: | |
| For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. | |
| .. note:: | |
| If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
| with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
| """ | |
| self._priority = self._cfg.priority | |
| self._priority_IS_weight = self._cfg.priority_IS_weight | |
| # actor and critic optimizer | |
| self._optimizer_actor = Adam( | |
| self._model.actor.parameters(), | |
| lr=self._cfg.learn.learning_rate_actor, | |
| ) | |
| self._optimizer_critic = Adam( | |
| self._model.critic.parameters(), | |
| lr=self._cfg.learn.learning_rate_critic, | |
| ) | |
| self._reward_batch_norm = self._cfg.reward_batch_norm | |
| self._gamma = self._cfg.learn.discount_factor | |
| self._actor_update_freq = self._cfg.learn.actor_update_freq | |
| self._twin_critic = self._cfg.model.twin_critic # True for TD3, False for DDPG | |
| # main and target models | |
| self._target_model = copy.deepcopy(self._model) | |
| self._learn_model = model_wrap(self._model, wrapper_name='base') | |
| if self._cfg.action_space == 'hybrid': | |
| self._learn_model = model_wrap(self._learn_model, wrapper_name='hybrid_argmax_sample') | |
| self._target_model = model_wrap(self._target_model, wrapper_name='hybrid_argmax_sample') | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='target', | |
| update_type='momentum', | |
| update_kwargs={'theta': self._cfg.learn.target_theta} | |
| ) | |
| if self._cfg.learn.noise: | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='action_noise', | |
| noise_type='gauss', | |
| noise_kwargs={ | |
| 'mu': 0.0, | |
| 'sigma': self._cfg.learn.noise_sigma | |
| }, | |
| noise_range=self._cfg.learn.noise_range | |
| ) | |
| self._learn_model.reset() | |
| self._target_model.reset() | |
| self._forward_learn_cnt = 0 # count iterations | |
| def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: | |
| """ | |
| Overview: | |
| Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
| that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
| result, including various training information such as loss, action, priority. | |
| Arguments: | |
| - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ | |
| training samples. For each element in list, the key of the dict is the name of data items and the \ | |
| value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ | |
| combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ | |
| dimension by some utility functions such as ``default_preprocess_learn``. \ | |
| For DDPG, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ | |
| ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight`` \ | |
| and ``logit`` which is used for hybrid action space. | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ | |
| recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ | |
| detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. | |
| .. note:: | |
| The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
| For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
| You can implement you own model rather than use the default model. For more information, please raise an \ | |
| issue in GitHub repo and we will continue to follow up. | |
| .. note:: | |
| For more detailed examples, please refer to our unittest for DDPGPolicy: ``ding.policy.tests.test_ddpg``. | |
| """ | |
| loss_dict = {} | |
| data = default_preprocess_learn( | |
| data, | |
| use_priority=self._cfg.priority, | |
| use_priority_IS_weight=self._cfg.priority_IS_weight, | |
| ignore_done=self._cfg.learn.ignore_done, | |
| use_nstep=False | |
| ) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| # ==================== | |
| # critic learn forward | |
| # ==================== | |
| self._learn_model.train() | |
| self._target_model.train() | |
| next_obs = data['next_obs'] | |
| reward = data['reward'] | |
| if self._reward_batch_norm: | |
| reward = (reward - reward.mean()) / (reward.std() + 1e-8) | |
| # current q value | |
| q_value = self._learn_model.forward(data, mode='compute_critic')['q_value'] | |
| # target q value. | |
| with torch.no_grad(): | |
| next_actor_data = self._target_model.forward(next_obs, mode='compute_actor') | |
| next_actor_data['obs'] = next_obs | |
| target_q_value = self._target_model.forward(next_actor_data, mode='compute_critic')['q_value'] | |
| q_value_dict = {} | |
| target_q_value_dict = {} | |
| if self._twin_critic: | |
| # TD3: two critic networks | |
| target_q_value = torch.min(target_q_value[0], target_q_value[1]) # find min one as target q value | |
| q_value_dict['q_value'] = q_value[0].mean().data.item() | |
| q_value_dict['q_value_twin'] = q_value[1].mean().data.item() | |
| target_q_value_dict['target q_value'] = target_q_value.mean().data.item() | |
| # critic network1 | |
| td_data = v_1step_td_data(q_value[0], target_q_value, reward, data['done'], data['weight']) | |
| critic_loss, td_error_per_sample1 = v_1step_td_error(td_data, self._gamma) | |
| loss_dict['critic_loss'] = critic_loss | |
| # critic network2(twin network) | |
| td_data_twin = v_1step_td_data(q_value[1], target_q_value, reward, data['done'], data['weight']) | |
| critic_twin_loss, td_error_per_sample2 = v_1step_td_error(td_data_twin, self._gamma) | |
| loss_dict['critic_twin_loss'] = critic_twin_loss | |
| td_error_per_sample = (td_error_per_sample1 + td_error_per_sample2) / 2 | |
| else: | |
| # DDPG: single critic network | |
| q_value_dict['q_value'] = q_value.mean().data.item() | |
| target_q_value_dict['target q_value'] = target_q_value.mean().data.item() | |
| td_data = v_1step_td_data(q_value, target_q_value, reward, data['done'], data['weight']) | |
| critic_loss, td_error_per_sample = v_1step_td_error(td_data, self._gamma) | |
| loss_dict['critic_loss'] = critic_loss | |
| # ================ | |
| # critic update | |
| # ================ | |
| self._optimizer_critic.zero_grad() | |
| for k in loss_dict: | |
| if 'critic' in k: | |
| loss_dict[k].backward() | |
| self._optimizer_critic.step() | |
| # =============================== | |
| # actor learn forward and update | |
| # =============================== | |
| # actor updates every ``self._actor_update_freq`` iters | |
| if (self._forward_learn_cnt + 1) % self._actor_update_freq == 0: | |
| actor_data = self._learn_model.forward(data['obs'], mode='compute_actor') | |
| actor_data['obs'] = data['obs'] | |
| if self._twin_critic: | |
| actor_loss = -self._learn_model.forward(actor_data, mode='compute_critic')['q_value'][0].mean() | |
| else: | |
| actor_loss = -self._learn_model.forward(actor_data, mode='compute_critic')['q_value'].mean() | |
| loss_dict['actor_loss'] = actor_loss | |
| # actor update | |
| self._optimizer_actor.zero_grad() | |
| actor_loss.backward() | |
| self._optimizer_actor.step() | |
| # ============= | |
| # after update | |
| # ============= | |
| loss_dict['total_loss'] = sum(loss_dict.values()) | |
| self._forward_learn_cnt += 1 | |
| self._target_model.update(self._learn_model.state_dict()) | |
| if self._cfg.action_space == 'hybrid': | |
| action_log_value = -1. # TODO(nyz) better way to viz hybrid action | |
| else: | |
| action_log_value = data['action'].mean() | |
| return { | |
| 'cur_lr_actor': self._optimizer_actor.defaults['lr'], | |
| 'cur_lr_critic': self._optimizer_critic.defaults['lr'], | |
| # 'q_value': np.array(q_value).mean(), | |
| 'action': action_log_value, | |
| 'priority': td_error_per_sample.abs().tolist(), | |
| 'td_error': td_error_per_sample.abs().mean(), | |
| **loss_dict, | |
| **q_value_dict, | |
| **target_q_value_dict, | |
| } | |
| def _state_dict_learn(self) -> Dict[str, Any]: | |
| """ | |
| Overview: | |
| Return the state_dict of learn mode, usually including model, target_model and optimizers. | |
| Returns: | |
| - state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring. | |
| """ | |
| return { | |
| 'model': self._learn_model.state_dict(), | |
| 'target_model': self._target_model.state_dict(), | |
| 'optimizer_actor': self._optimizer_actor.state_dict(), | |
| 'optimizer_critic': self._optimizer_critic.state_dict(), | |
| } | |
| def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
| """ | |
| Overview: | |
| Load the state_dict variable into policy learn mode. | |
| Arguments: | |
| - state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before. | |
| .. tip:: | |
| If you want to only load some parts of model, you can simply set the ``strict`` argument in \ | |
| load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ | |
| complicated operation. | |
| """ | |
| self._learn_model.load_state_dict(state_dict['model']) | |
| self._target_model.load_state_dict(state_dict['target_model']) | |
| self._optimizer_actor.load_state_dict(state_dict['optimizer_actor']) | |
| self._optimizer_critic.load_state_dict(state_dict['optimizer_critic']) | |
| def _init_collect(self) -> None: | |
| """ | |
| Overview: | |
| Initialize the collect mode of policy, including related attributes and modules. For DDPG, it contains the \ | |
| collect_model to balance the exploration and exploitation with the perturbed noise mechanism, and other \ | |
| algorithm-specific arguments such as unroll_len. \ | |
| This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. | |
| .. note:: | |
| If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ | |
| with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. | |
| """ | |
| self._unroll_len = self._cfg.collect.unroll_len | |
| # collect model | |
| self._collect_model = model_wrap( | |
| self._model, | |
| wrapper_name='action_noise', | |
| noise_type='gauss', | |
| noise_kwargs={ | |
| 'mu': 0.0, | |
| 'sigma': self._cfg.collect.noise_sigma | |
| }, | |
| noise_range=None | |
| ) | |
| if self._cfg.action_space == 'hybrid': | |
| self._collect_model = model_wrap(self._collect_model, wrapper_name='hybrid_eps_greedy_multinomial_sample') | |
| self._collect_model.reset() | |
| def _forward_collect(self, data: Dict[int, Any], **kwargs) -> Dict[int, Any]: | |
| """ | |
| Overview: | |
| Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ | |
| that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ | |
| data, such as the action to interact with the envs. | |
| Arguments: | |
| - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
| key of the dict is environment id and the value is the corresponding data of the env. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ | |
| other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \ | |
| dict is the same as the input data, i.e. environment id. | |
| .. note:: | |
| The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
| For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
| You can implement you own model rather than use the default model. For more information, please raise an \ | |
| issue in GitHub repo and we will continue to follow up. | |
| .. note:: | |
| For more detailed examples, please refer to our unittest for DDPGPolicy: ``ding.policy.tests.test_ddpg``. | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._collect_model.eval() | |
| with torch.no_grad(): | |
| output = self._collect_model.forward(data, mode='compute_actor', **kwargs) | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor], | |
| timestep: namedtuple) -> Dict[str, torch.Tensor]: | |
| """ | |
| Overview: | |
| Process and pack one timestep transition data into a dict, which can be directly used for training and \ | |
| saved in replay buffer. For DDPG, it contains obs, next_obs, action, reward, done. | |
| Arguments: | |
| - obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari. | |
| - policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \ | |
| as input. For DDPG, it contains the action and the logit of the action (in hybrid action space). | |
| - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \ | |
| except all the elements have been transformed into tensor data. Usually, it contains the next obs, \ | |
| reward, done, info, etc. | |
| Returns: | |
| - transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep. | |
| """ | |
| transition = { | |
| 'obs': obs, | |
| 'next_obs': timestep.obs, | |
| 'action': policy_output['action'], | |
| 'reward': timestep.reward, | |
| 'done': timestep.done, | |
| } | |
| if self._cfg.action_space == 'hybrid': | |
| transition['logit'] = policy_output['logit'] | |
| return transition | |
| def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
| """ | |
| Overview: | |
| For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ | |
| can be used for training directly. In DDPG, a train sample is a processed transition (unroll_len=1). | |
| Arguments: | |
| - transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \ | |
| the same format as the return value of ``self._process_transition`` method. | |
| Returns: | |
| - samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \ | |
| as input transitions, but may contain more data for training. | |
| """ | |
| return get_train_sample(transitions, self._unroll_len) | |
| def _init_eval(self) -> None: | |
| """ | |
| Overview: | |
| Initialize the eval mode of policy, including related attributes and modules. For DDPG, it contains the \ | |
| eval model to greedily select action type with argmax q_value mechanism for hybrid action space. \ | |
| This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. | |
| .. note:: | |
| If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ | |
| with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. | |
| """ | |
| self._eval_model = model_wrap(self._model, wrapper_name='base') | |
| if self._cfg.action_space == 'hybrid': | |
| self._eval_model = model_wrap(self._eval_model, wrapper_name='hybrid_argmax_sample') | |
| self._eval_model.reset() | |
| def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: | |
| """ | |
| Overview: | |
| Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ | |
| means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ | |
| action to interact with the envs. | |
| Arguments: | |
| - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
| key of the dict is environment id and the value is the corresponding data of the env. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ | |
| key of the dict is the same as the input data, i.e. environment id. | |
| .. note:: | |
| The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
| For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
| You can implement you own model rather than use the default model. For more information, please raise an \ | |
| issue in GitHub repo and we will continue to follow up. | |
| .. note:: | |
| For more detailed examples, please refer to our unittest for DDPGPolicy: ``ding.policy.tests.test_ddpg``. | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._eval_model.eval() | |
| with torch.no_grad(): | |
| output = self._eval_model.forward(data, mode='compute_actor') | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _monitor_vars_learn(self) -> List[str]: | |
| """ | |
| Overview: | |
| Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ | |
| as text logger, tensorboard logger, will use these keys to save the corresponding data. | |
| Returns: | |
| - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. | |
| """ | |
| ret = [ | |
| 'cur_lr_actor', 'cur_lr_critic', 'critic_loss', 'actor_loss', 'total_loss', 'q_value', 'q_value_twin', | |
| 'action', 'td_error' | |
| ] | |
| if self._twin_critic: | |
| ret += ['critic_twin_loss'] | |
| return ret | |