Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
| from threading import Thread | |
| import traceback | |
| model_path = 'infly/OpenCoder-8B-Instruct' | |
| # Loading the tokenizer and model from Hugging Face's model hub. | |
| tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16) | |
| # using CUDA for an optimal experience | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| model = model.to(device) | |
| # Defining a custom stopping criteria class for the model's text generation. | |
| class StopOnTokens(StoppingCriteria): | |
| def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
| stop_ids = [96539] # IDs of tokens where the generation should stop. | |
| for stop_id in stop_ids: | |
| if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token. | |
| return True | |
| return False | |
| system_role= 'system' | |
| user_role = 'user' | |
| assistant_role = "assistant" | |
| sft_start_token = "<|im_start|>" | |
| sft_end_token = "<|im_end|>" | |
| ct_end_token = "<|endoftext|>" | |
| # system_prompt= 'You are a CodeLLM developed by INF.' | |
| # Function to generate model predictions. | |
| def predict(message, history): | |
| try: | |
| stop = StopOnTokens() | |
| model_messages = [] | |
| # print(f'history: {history}') | |
| for i, item in enumerate(history): | |
| model_messages.append({"role": user_role, "content": item[0]}) | |
| model_messages.append({"role": assistant_role, "content": item[1]}) | |
| model_messages.append({"role": user_role, "content": message}) | |
| print(f'model_messages: {model_messages}') | |
| # print(f'model_final_inputs: {tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, tokenize=False)}', flush=True) | |
| model_inputs = tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, return_tensors="pt").to(device) | |
| # model_inputs = tokenizer([messages], return_tensors="pt").to(device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| input_ids=model_inputs, | |
| streamer=streamer, | |
| max_new_tokens=1024, | |
| do_sample=False, | |
| stopping_criteria=StoppingCriteriaList([stop]) | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() # Starting the generation in a separate thread. | |
| partial_message = "" | |
| for new_token in streamer: | |
| partial_message += new_token | |
| if sft_end_token in partial_message: # Breaking the loop if the stop token is generated. | |
| break | |
| yield partial_message | |
| except Exception as e: | |
| print(traceback.format_exc()) | |
| css = """ | |
| full-height { | |
| height: 100%; | |
| } | |
| """ | |
| prompt_examples = [ | |
| 'Write a quick sort algorithm in python.', | |
| 'Write a greedy snake game using pygame.', | |
| 'How to use numpy?' | |
| ] | |
| placeholder = """ | |
| <div style="opacity: 0.5;"> | |
| <img src="https://raw.githubusercontent.com/OpenCoder-llm/opencoder-llm.github.io/refs/heads/main/static/images/opencoder_icon.jpg" style="width:20%;"> | |
| </div> | |
| """ | |
| chatbot = gr.Chatbot(label='OpenCoder', placeholder=placeholder) | |
| with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo: | |
| gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css) | |
| demo.launch() # Launching the web interface. |