|
import cv2 |
|
import gradio as gr |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
def vid_inf(vid_path, contour_thresh): |
|
|
|
cap = cv2.VideoCapture(vid_path) |
|
|
|
|
|
frame_width = int(cap.get(3)) |
|
frame_height = int(cap.get(4)) |
|
fps = int(cap.get(cv2.CAP_PROP_FPS)) |
|
frame_size = (frame_width, frame_height) |
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
output_video = "output_recorded.mp4" |
|
|
|
|
|
out = cv2.VideoWriter(output_video, fourcc, fps, frame_size) |
|
|
|
|
|
backSub = cv2.createBackgroundSubtractorMOG2(history=200, varThreshold=25, detectShadows=True) |
|
|
|
|
|
|
|
if not cap.isOpened(): |
|
print("Error opening video file") |
|
count = 0 |
|
|
|
while cap.isOpened(): |
|
|
|
ret, frame = cap.read() |
|
|
|
if ret: |
|
|
|
fg_mask = backSub.apply(frame) |
|
|
|
|
|
|
|
|
|
|
|
|
|
retval, mask_thresh = cv2.threshold( |
|
fg_mask, 200, 255, cv2.THRESH_BINARY) |
|
|
|
|
|
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) |
|
|
|
mask_eroded = cv2.morphologyEx(mask_thresh, cv2.MORPH_OPEN, kernel) |
|
|
|
|
|
|
|
|
|
contours, hierarchy = cv2.findContours( |
|
mask_eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
|
|
min_contour_area = contour_thresh |
|
large_contours = [ |
|
cnt for cnt in contours if cv2.contourArea(cnt) > min_contour_area] |
|
|
|
frame_out = frame.copy() |
|
for cnt in large_contours: |
|
|
|
x, y, w, h = cv2.boundingRect(cnt) |
|
frame_out = cv2.rectangle(frame_out, (x, y), (x+w, y+h), (0, 0, 200), 3) |
|
frame_out_final = cv2.cvtColor(frame_out, cv2.COLOR_BGR2RGB) |
|
vid = out.write(frame_out) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if not count % 12: |
|
yield frame_out_final, None |
|
count += 1 |
|
|
|
|
|
if cv2.waitKey(25) & 0xFF == ord('q'): |
|
break |
|
else: |
|
break |
|
|
|
|
|
cap.release() |
|
out.release() |
|
|
|
cv2.destroyAllWindows() |
|
yield None, output_video |
|
|
|
|
|
|
|
|
|
|
|
input_video = gr.Video(label="Input Video") |
|
contour_thresh = gr.Slider(0, 10000, value=4, label="Contour Threshold", info="Adjust the Countour Threshold according to the object size that you want to detect.") |
|
output_frames = gr.Image(label="Output Frames") |
|
output_video_file = gr.Video(label="Output video") |
|
|
|
app = gr.Interface( |
|
fn=vid_inf, |
|
inputs=[input_video, contour_thresh], |
|
outputs=[output_frames, output_video_file], |
|
title=f"Motion Detection using OpenCV", |
|
description=f'A gradio app for dynamic video analysis tool that leverages advanced background subtraction and contour detection techniques to identify and track moving objects in real-time.', |
|
allow_flagging="never", |
|
examples=[["./sample/car.mp4", "1000"], ["./sample/motion_test.mp4", "5000"], ["./sample/home.mp4", "4500"]], |
|
cache_examples=False, |
|
) |
|
app.queue().launch() |