updated app.py
Browse files- app.py +186 -141
- app2.py +157 -0
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,157 +1,202 @@
|
|
1 |
-
"""Application to demo inpainting, Median and Bilateral Blur using streamlit.
|
2 |
-
|
3 |
-
Run using: streamlit run 10_04_image_restoration_app.py
|
4 |
-
"""
|
5 |
-
|
6 |
import streamlit as st
|
7 |
-
import pathlib
|
8 |
-
from streamlit_drawable_canvas import st_canvas
|
9 |
-
import cv2
|
10 |
import numpy as np
|
11 |
-
import
|
12 |
-
import base64
|
13 |
from PIL import Image
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
# href = f'<a href="data:file/txt;base64,{img_str}" download="{filename}">{text}</a>'
|
23 |
-
# return href
|
24 |
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
28 |
|
29 |
-
# Description
|
30 |
-
st.sidebar.text('Upload an image and apply various restoration techniques.')
|
31 |
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
# Specify canvas parameters in application
|
34 |
-
uploaded_file = st.sidebar.file_uploader("Upload Image to restore:", type=["png", "jpg"])
|
35 |
-
image = None
|
36 |
-
res = None
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
42 |
image = cv2.imdecode(file_bytes, 1)
|
43 |
-
|
44 |
-
st.
|
45 |
-
st.
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
dia = st.sidebar.slider("diameter: ", 1, 50, 20)
|
64 |
-
sigmaColor = st.sidebar.slider("sigmaColor: ", 0, 250, 200, 10)
|
65 |
-
sigmaSpace = st.sidebar.slider("sigmaSpace: ", 0, 250, 100, 10)
|
66 |
-
image = cv2.bilateralFilter(image, dia, sigmaColor, sigmaSpace)
|
67 |
-
res=image[:,:,::-1]
|
68 |
-
st.subheader("Bilateral Blurred Image")
|
69 |
-
st.image(res)
|
70 |
-
# Display download button
|
71 |
-
result = Image.fromarray(res)
|
72 |
-
buffered = io.BytesIO()
|
73 |
-
result.save(buffered, format="PNG")
|
74 |
-
img_bytes = buffered.getvalue()
|
75 |
-
st.download_button(label='Download Output', data=img_bytes, file_name='bilateral_blur_output.png', mime='image/png')
|
76 |
-
|
77 |
-
elif option == 'Image Inpaint':
|
78 |
-
|
79 |
-
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 5)
|
80 |
-
h, w = image.shape[:2]
|
81 |
-
if w > 800:
|
82 |
-
h_, w_ = int(h * 800 / w), 800
|
83 |
-
else:
|
84 |
-
h_, w_ = h, w
|
85 |
-
|
86 |
-
# Create a canvas component.
|
87 |
-
st.subheader("Draw over the areas you want to inpaint:")
|
88 |
-
canvas_result = st_canvas(
|
89 |
-
fill_color='white',
|
90 |
-
stroke_width=stroke_width,
|
91 |
-
stroke_color='black',
|
92 |
-
background_image=Image.open(uploaded_file).resize((h_, w_)),
|
93 |
-
update_streamlit=True,
|
94 |
-
height=h_,
|
95 |
-
width=w_,
|
96 |
-
drawing_mode='freedraw',
|
97 |
-
key="canvas",
|
98 |
)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
st.
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
else:
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
+
import cv2
|
|
|
4 |
from PIL import Image
|
5 |
+
import io
|
6 |
+
import time
|
7 |
+
from streamlit_drawable_canvas import st_canvas
|
8 |
|
9 |
|
10 |
+
# Helper functions
|
11 |
+
def np_to_pil(np_img_bgr):
|
12 |
+
if len(np_img_bgr.shape) == 2:
|
13 |
+
return Image.fromarray(np_img_bgr)
|
14 |
+
else:
|
15 |
+
return Image.fromarray(np_img_bgr[..., ::-1])
|
|
|
|
|
16 |
|
17 |
|
18 |
+
def pil_to_np(pil_img):
|
19 |
+
np_img_rgb = np.array(pil_img)
|
20 |
+
if np_img_rgb.shape[-1] == 4:
|
21 |
+
np_img_rgb = np_img_rgb[..., :3]
|
22 |
+
return np_img_rgb[..., ::-1]
|
23 |
|
|
|
|
|
24 |
|
25 |
+
def download_button_img(np_img_bgr, label, filename):
|
26 |
+
img = np_to_pil(np_img_bgr)
|
27 |
+
buf = io.BytesIO()
|
28 |
+
img.save(buf, format="PNG")
|
29 |
+
st.download_button(label, data=buf.getvalue(), file_name=filename, mime="image/png")
|
30 |
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Set page config
|
33 |
+
st.set_page_config(page_title="Image Restoration App", layout="wide")
|
34 |
+
st.title("Image Restoration App")
|
35 |
|
36 |
+
# Upload section
|
37 |
+
st.sidebar.title("Upload Image")
|
38 |
+
uploaded_file = st.sidebar.file_uploader("Choose an image", type=["png", "jpg", "jpeg"])
|
39 |
+
|
40 |
+
|
41 |
+
if "orig_image" not in st.session_state:
|
42 |
+
st.session_state.orig_image = None
|
43 |
+
if "current_image" not in st.session_state:
|
44 |
+
st.session_state.current_image = None
|
45 |
+
if "inpaint_result" not in st.session_state:
|
46 |
+
st.session_state.inpaint_result = None
|
47 |
+
if "canvas_result" not in st.session_state:
|
48 |
+
st.session_state.canvas_result = None
|
49 |
+
|
50 |
+
if uploaded_file:
|
51 |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
52 |
image = cv2.imdecode(file_bytes, 1)
|
53 |
+
st.session_state.orig_image = image
|
54 |
+
st.session_state.current_image = image.copy()
|
55 |
+
st.session_state.inpaint_result = None
|
56 |
+
|
57 |
+
if st.session_state.orig_image is None:
|
58 |
+
st.info("Upload an image to get started.")
|
59 |
+
st.stop()
|
60 |
+
|
61 |
+
# Tabs
|
62 |
+
tabs = st.tabs(["Filters", "Inpainting", "Compare"])
|
63 |
+
|
64 |
+
# FILTERS TAB
|
65 |
+
with tabs[0]:
|
66 |
+
col1, col2 = st.columns([1, 2])
|
67 |
+
with col1:
|
68 |
+
st.subheader("Filters")
|
69 |
+
filter_type = st.selectbox(
|
70 |
+
"Choose filter:",
|
71 |
+
["None", "Gaussian", "Median", "Bilateral", "Brightness/Contrast", "Grayscale"],
|
72 |
+
key="filter",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
)
|
74 |
+
|
75 |
+
if filter_type == "Gaussian":
|
76 |
+
ksize = st.slider("Kernel Size", 1, 31, 5, step=2, key="gauss_ksize")
|
77 |
+
sigma = st.slider("Sigma X", 0.0, 10.0, 2.0, key="gauss_sigma")
|
78 |
+
elif filter_type == "Median":
|
79 |
+
ksize = st.slider("Kernel Size", 1, 31, 5, step=2, key="median_ksize")
|
80 |
+
elif filter_type == "Bilateral":
|
81 |
+
d = st.slider("Diameter", 1, 30, 9, key="bilateral_d")
|
82 |
+
sigmaColor = st.slider("Sigma Color", 1, 150, 75, key="bilateral_color")
|
83 |
+
sigmaSpace = st.slider("Sigma Space", 1, 150, 75, key="bilateral_space")
|
84 |
+
elif filter_type == "Brightness/Contrast":
|
85 |
+
brightness = st.slider("Brightness", -100, 100, 0, key="brightness")
|
86 |
+
contrast = st.slider("Contrast", -100, 100, 0, key="contrast")
|
87 |
+
|
88 |
+
if st.button("Apply Filter", key="apply_filter"):
|
89 |
+
img = st.session_state.current_image.copy()
|
90 |
+
if filter_type == "Gaussian":
|
91 |
+
img = cv2.GaussianBlur(img, (ksize, ksize), sigma)
|
92 |
+
elif filter_type == "Median":
|
93 |
+
img = cv2.medianBlur(img, ksize)
|
94 |
+
elif filter_type == "Bilateral":
|
95 |
+
img = cv2.bilateralFilter(img, d, sigmaColor, sigmaSpace)
|
96 |
+
elif filter_type == "Brightness/Contrast":
|
97 |
+
img = cv2.convertScaleAbs(img, alpha=1 + contrast / 100.0, beta=brightness)
|
98 |
+
elif filter_type == "Grayscale":
|
99 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
100 |
+
st.session_state.current_image = img
|
101 |
+
st.session_state.inpaint_result = None
|
102 |
+
|
103 |
+
if st.button("Reset Image", key="reset_filter"):
|
104 |
+
st.session_state.current_image = st.session_state.orig_image.copy()
|
105 |
+
st.session_state.inpaint_result = None
|
106 |
+
|
107 |
+
with col2:
|
108 |
+
st.subheader("Image Preview")
|
109 |
+
img = st.session_state.current_image
|
110 |
+
st.image(img if len(img.shape) == 2 else img[..., ::-1], use_container_width=True)
|
111 |
+
|
112 |
+
# INPAINTING TAB
|
113 |
+
with tabs[1]:
|
114 |
+
col1, col2, col3 = st.columns([1, 1.5, 1.5])
|
115 |
+
|
116 |
+
with col1:
|
117 |
+
st.subheader("Inpainting Settings")
|
118 |
+
stroke_width = st.slider("Stroke Width", 1, 25, 5, key="stroke")
|
119 |
+
method = st.selectbox("Inpainting Method", ["Telea", "NS"], key="inpaint_method")
|
120 |
+
|
121 |
+
if st.button("Apply Inpaint", key="apply_inpaint"):
|
122 |
+
canvas = st.session_state.get("canvas_result")
|
123 |
+
if canvas and canvas.image_data is not None:
|
124 |
+
mask_rgba = canvas.image_data
|
125 |
+
if mask_rgba.shape[-1] == 4:
|
126 |
+
mask = mask_rgba[..., 3]
|
127 |
+
h, w = st.session_state.current_image.shape[:2]
|
128 |
+
mask = cv2.resize(mask, (w, h))
|
129 |
+
mask = (mask > 0).astype(np.uint8) * 255
|
130 |
+
flag = cv2.INPAINT_TELEA if method == "Telea" else cv2.INPAINT_NS
|
131 |
+
result = cv2.inpaint(st.session_state.current_image, mask, 3, flag)
|
132 |
+
st.session_state.inpaint_result = result
|
133 |
+
|
134 |
+
if st.button("Reset to Original", key="reset_inpaint"):
|
135 |
+
st.session_state.current_image = st.session_state.orig_image.copy()
|
136 |
+
st.session_state.inpaint_result = None
|
137 |
+
st.markdown("---")
|
138 |
+
if st.button("Reset Canvas"):
|
139 |
+
st.session_state.canvas_key = f"canvas_{int(time.time())}"
|
140 |
+
|
141 |
+
with col2:
|
142 |
+
st.subheader("Draw Mask")
|
143 |
+
h, w = st.session_state.current_image.shape[:2]
|
144 |
+
max_width = 500
|
145 |
+
scale = min(1.0, max_width / w)
|
146 |
+
canvas_w, canvas_h = int(w * scale), int(h * scale)
|
147 |
+
|
148 |
+
show_mask = st.checkbox("Show Mask Preview", key="show_mask")
|
149 |
+
|
150 |
+
if "canvas_key" not in st.session_state:
|
151 |
+
st.session_state.canvas_key = "canvas"
|
152 |
+
|
153 |
+
if not show_mask:
|
154 |
+
pil_bg = np_to_pil(st.session_state.current_image).resize((canvas_w, canvas_h))
|
155 |
+
canvas = st_canvas(
|
156 |
+
fill_color="white",
|
157 |
+
stroke_width=stroke_width,
|
158 |
+
stroke_color="black",
|
159 |
+
background_image=pil_bg,
|
160 |
+
update_streamlit=True,
|
161 |
+
height=canvas_h,
|
162 |
+
width=canvas_w,
|
163 |
+
drawing_mode="freedraw",
|
164 |
+
key=st.session_state.canvas_key,
|
165 |
+
)
|
166 |
+
st.session_state.canvas_result = canvas
|
167 |
+
else:
|
168 |
+
canvas = st.session_state.get("canvas_result")
|
169 |
+
if canvas and canvas.image_data is not None:
|
170 |
+
mask = canvas.image_data[..., 3] if canvas.image_data.shape[-1] == 4 else None
|
171 |
+
if mask is not None:
|
172 |
+
mask = cv2.resize(mask, (w, h))
|
173 |
+
mask = (mask > 0).astype(np.uint8) * 255
|
174 |
+
st.image(mask, caption="Inpainting Mask", use_container_width=True)
|
175 |
+
|
176 |
+
with col3:
|
177 |
+
st.subheader("Inpainting Result")
|
178 |
+
result = st.session_state.inpaint_result
|
179 |
+
if result is not None:
|
180 |
+
st.image(result[..., ::-1], use_container_width=True)
|
181 |
+
download_button_img(result, "Download Inpainted Image", "inpainted_result.png")
|
182 |
else:
|
183 |
+
st.info("Draw a mask and apply inpainting to see result.")
|
184 |
+
|
185 |
+
# COMPARE TAB
|
186 |
+
with tabs[2]:
|
187 |
+
col1, col2 = st.columns(2)
|
188 |
+
with col1:
|
189 |
+
st.subheader("Original Image")
|
190 |
+
orig = st.session_state.orig_image
|
191 |
+
st.image(orig[..., ::-1], use_container_width=True)
|
192 |
+
download_button_img(orig, "Download Original", "original.png")
|
193 |
+
|
194 |
+
with col2:
|
195 |
+
st.subheader("Processed Image")
|
196 |
+
current = (
|
197 |
+
st.session_state.inpaint_result
|
198 |
+
if st.session_state.inpaint_result is not None
|
199 |
+
else st.session_state.current_image
|
200 |
+
)
|
201 |
+
st.image(current if len(current.shape) == 2 else current[..., ::-1], use_container_width=True)
|
202 |
+
download_button_img(current, "Download Current", "current.png")
|
app2.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Application to demo inpainting, Median and Bilateral Blur using streamlit.
|
2 |
+
|
3 |
+
Run using: streamlit run 10_04_image_restoration_app.py
|
4 |
+
"""
|
5 |
+
|
6 |
+
import streamlit as st
|
7 |
+
import pathlib
|
8 |
+
from streamlit_drawable_canvas import st_canvas
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
import io
|
12 |
+
import base64
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
# # Function to create a download link for output image
|
17 |
+
# def get_image_download_link(img, filename, text):
|
18 |
+
# """Generates a link to download a particular image file."""
|
19 |
+
# buffered = io.BytesIO()
|
20 |
+
# img.save(buffered, format='JPEG')
|
21 |
+
# img_str = base64.b64encode(buffered.getvalue()).decode()
|
22 |
+
# href = f'<a href="data:file/txt;base64,{img_str}" download="{filename}">{text}</a>'
|
23 |
+
# return href
|
24 |
+
|
25 |
+
|
26 |
+
# Set title.
|
27 |
+
st.sidebar.title('Image Restoration App with OpenCV')
|
28 |
+
|
29 |
+
# Description
|
30 |
+
st.sidebar.text('Upload an image and apply various restoration techniques.')
|
31 |
+
|
32 |
+
|
33 |
+
# Specify canvas parameters in application
|
34 |
+
uploaded_file = st.sidebar.file_uploader("Upload Image to restore:", type=["png", "jpg"])
|
35 |
+
image = None
|
36 |
+
res = None
|
37 |
+
|
38 |
+
if uploaded_file is not None:
|
39 |
+
|
40 |
+
# Convert the file to an opencv image.
|
41 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
42 |
+
image = cv2.imdecode(file_bytes, 1)
|
43 |
+
# Display the uploaded image
|
44 |
+
st.subheader("Original Image")
|
45 |
+
st.image(image[:, :, ::-1])
|
46 |
+
# Display a selection box for choosing the filter to apply.
|
47 |
+
option = st.sidebar.selectbox('Median or Bilateral Blur or Inpaint?', ('None', 'Median Blur', 'Bilateral Blur', 'Image Inpaint'))
|
48 |
+
|
49 |
+
if option == 'Median Blur':
|
50 |
+
ksize = st.sidebar.slider("ksize: ", 3, 15, 5, 2)
|
51 |
+
image = cv2.medianBlur(image, ksize)
|
52 |
+
res=image[:,:,::-1]
|
53 |
+
st.subheader("Median Blurred Image")
|
54 |
+
st.image(res)
|
55 |
+
# Display download button
|
56 |
+
result = Image.fromarray(res)
|
57 |
+
buffered = io.BytesIO()
|
58 |
+
result.save(buffered, format="PNG")
|
59 |
+
img_bytes = buffered.getvalue()
|
60 |
+
st.download_button(label='Download Output', data=img_bytes, file_name='median_blur_output.png', mime='image/png')
|
61 |
+
|
62 |
+
elif option == 'Bilateral Blur':
|
63 |
+
dia = st.sidebar.slider("diameter: ", 1, 50, 20)
|
64 |
+
sigmaColor = st.sidebar.slider("sigmaColor: ", 0, 250, 200, 10)
|
65 |
+
sigmaSpace = st.sidebar.slider("sigmaSpace: ", 0, 250, 100, 10)
|
66 |
+
image = cv2.bilateralFilter(image, dia, sigmaColor, sigmaSpace)
|
67 |
+
res=image[:,:,::-1]
|
68 |
+
st.subheader("Bilateral Blurred Image")
|
69 |
+
st.image(res)
|
70 |
+
# Display download button
|
71 |
+
result = Image.fromarray(res)
|
72 |
+
buffered = io.BytesIO()
|
73 |
+
result.save(buffered, format="PNG")
|
74 |
+
img_bytes = buffered.getvalue()
|
75 |
+
st.download_button(label='Download Output', data=img_bytes, file_name='bilateral_blur_output.png', mime='image/png')
|
76 |
+
|
77 |
+
elif option == 'Image Inpaint':
|
78 |
+
|
79 |
+
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 5)
|
80 |
+
h, w = image.shape[:2]
|
81 |
+
if w > 800:
|
82 |
+
h_, w_ = int(h * 800 / w), 800
|
83 |
+
else:
|
84 |
+
h_, w_ = h, w
|
85 |
+
|
86 |
+
# Create a canvas component.
|
87 |
+
st.subheader("Draw over the areas you want to inpaint:")
|
88 |
+
canvas_result = st_canvas(
|
89 |
+
fill_color='white',
|
90 |
+
stroke_width=stroke_width,
|
91 |
+
stroke_color='black',
|
92 |
+
background_image=Image.open(uploaded_file).resize((h_, w_)),
|
93 |
+
update_streamlit=True,
|
94 |
+
height=h_,
|
95 |
+
width=w_,
|
96 |
+
drawing_mode='freedraw',
|
97 |
+
key="canvas",
|
98 |
+
)
|
99 |
+
stroke = canvas_result.image_data
|
100 |
+
|
101 |
+
if stroke is not None:
|
102 |
+
|
103 |
+
if st.sidebar.checkbox('show mask'):
|
104 |
+
st.subheader("Mask")
|
105 |
+
st.image(stroke)
|
106 |
+
|
107 |
+
mask = cv2.split(stroke)[3]
|
108 |
+
mask = np.uint8(mask)
|
109 |
+
mask = cv2.resize(mask, (w, h))
|
110 |
+
|
111 |
+
st.sidebar.caption('Happy with the selection?')
|
112 |
+
option = st.sidebar.selectbox('Mode', ['None', 'Telea', 'NS', 'Compare both'])
|
113 |
+
|
114 |
+
if option == 'Telea':
|
115 |
+
st.subheader('Result of Telea')
|
116 |
+
res = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)[:,:,::-1]
|
117 |
+
st.image(res)
|
118 |
+
# Display download button
|
119 |
+
result = Image.fromarray(res)
|
120 |
+
buffered = io.BytesIO()
|
121 |
+
result.save(buffered, format="PNG")
|
122 |
+
img_bytes = buffered.getvalue()
|
123 |
+
st.download_button(label='Download Output', data=img_bytes, file_name='inpaint_telea_output.png', mime='image/png')
|
124 |
+
elif option == 'Compare both':
|
125 |
+
col1, col2 = st.columns(2)
|
126 |
+
res1 = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)[:,:,::-1]
|
127 |
+
res2 = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_NS)[:,:,::-1]
|
128 |
+
with col1:
|
129 |
+
st.subheader('Result of Telea')
|
130 |
+
st.image(res1)
|
131 |
+
# Display download button
|
132 |
+
result1 = Image.fromarray(res1)
|
133 |
+
buffered1 = io.BytesIO()
|
134 |
+
result1.save(buffered1, format="PNG")
|
135 |
+
img_bytes1 = buffered1.getvalue()
|
136 |
+
st.download_button(label='Download Output', data=img_bytes1, file_name='inpaint_telea_output.png', mime='image/png')
|
137 |
+
with col2:
|
138 |
+
st.subheader('Result of NS')
|
139 |
+
st.image(res2)
|
140 |
+
# Display download button
|
141 |
+
result2 = Image.fromarray(res2)
|
142 |
+
buffered2 = io.BytesIO()
|
143 |
+
result2.save(buffered2, format="PNG")
|
144 |
+
img_bytes2 = buffered2.getvalue()
|
145 |
+
st.download_button(label='Download Output', data=img_bytes2, file_name='inpaint_ns_output.png', mime='image/png')
|
146 |
+
elif option == 'NS':
|
147 |
+
st.subheader('Result of NS')
|
148 |
+
res = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_NS)[:,:,::-1]
|
149 |
+
st.image(res)
|
150 |
+
# Display download button
|
151 |
+
result = Image.fromarray(res)
|
152 |
+
buffered = io.BytesIO()
|
153 |
+
result.save(buffered, format="PNG")
|
154 |
+
img_bytes = buffered.getvalue()
|
155 |
+
st.download_button(label='Download Output', data=img_bytes, file_name='inpaint_ns_output.png', mime='image/png')
|
156 |
+
else:
|
157 |
+
pass
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
numpy
|
2 |
-
streamlit
|
3 |
streamlit_drawable_canvas
|
4 |
opencv-python-headless
|
5 |
pillow
|
|
|
1 |
numpy
|
2 |
+
streamlit==1.40.0
|
3 |
streamlit_drawable_canvas
|
4 |
opencv-python-headless
|
5 |
pillow
|