ReactSeq / onmt /utils /cnn_factory.py
Oopstom's picture
Upload 313 files
c668e80 verified
"""
Implementation of "Convolutional Sequence to Sequence Learning"
"""
import torch
import torch.nn as nn
import torch.nn.init as init
import onmt.modules
SCALE_WEIGHT = 0.5**0.5
def shape_transform(x):
"""Tranform the size of the tensors to fit for conv input."""
return torch.unsqueeze(torch.transpose(x, 1, 2), 3)
class GatedConv(nn.Module):
"""Gated convolution for CNN class"""
def __init__(self, input_size, width=3, dropout=0.2, nopad=False):
super(GatedConv, self).__init__()
self.conv = onmt.modules.WeightNormConv2d(
input_size,
2 * input_size,
kernel_size=(width, 1),
stride=(1, 1),
padding=(width // 2 * (1 - nopad), 0),
)
# this param init is overridden by model_builder, useless then.
init.xavier_uniform_(self.conv.weight, gain=(4 * (1 - dropout)) ** 0.5)
self.dropout = nn.Dropout(dropout)
def forward(self, x_var):
x_var = self.dropout(x_var)
x_var = self.conv(x_var)
out, gate = x_var.split(int(x_var.size(1) / 2), 1)
out = out * torch.sigmoid(gate)
return out
class StackedCNN(nn.Module):
"""Stacked CNN class"""
def __init__(self, num_layers, input_size, cnn_kernel_width=3, dropout=0.2):
super(StackedCNN, self).__init__()
self.dropout = dropout
self.num_layers = num_layers
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(GatedConv(input_size, cnn_kernel_width, dropout))
def forward(self, x):
for conv in self.layers:
x = x + conv(x)
x *= SCALE_WEIGHT
return x