OnabajoMonsurat's picture
First commit for brain tumor prediction app
300364b
raw
history blame
646 Bytes
import torch
import torchvision
from torch import nn
def create_model(num_classes:int=4,
seed:int=42):
# Create Effnet pretrained model
weights= torchvision.models.EfficientNet_B0_Weights.DEFAULT
transforms= weights.transforms()
model= torchvision.models.efficientnet_b0(weights=weights)
# Freeze all layers in the base model
for param in model.parameters():
param.requires_grad= False
# Change the classifier layer
torch.manual_seed(seed)
model.classifier= nn.Sequential(
nn.Dropout(p=0.2, inplace= True),
nn.Linear(in_features= 1280, out_features= num_classes)
)
return model, transforms