Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import os | |
from huggingface_hub import InferenceClient,HfApi | |
import random | |
import json | |
import datetime | |
import uuid | |
import yt_dlp | |
import cv2 | |
import whisper | |
from agent import ( | |
PREFIX, | |
COMPRESS_DATA_PROMPT, | |
COMPRESS_DATA_PROMPT_SMALL, | |
LOG_PROMPT, | |
LOG_RESPONSE, | |
) | |
client = InferenceClient( | |
"mistralai/Mixtral-8x7B-Instruct-v0.1" | |
) | |
reponame="Omnibus/tmp" | |
save_data=f'https://huggingface.co/datasets/{reponame}/raw/main/' | |
#token_self = os.environ['HF_TOKEN'] | |
#api=HfApi(token=token_self) | |
sizes = list(whisper._MODELS.keys()) | |
langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values())) | |
current_size = "base" | |
loaded_model = whisper.load_model(current_size) | |
VERBOSE = True | |
MAX_HISTORY = 100 | |
MAX_DATA = 20000 | |
def dl(inp,img): | |
uid=uuid.uuid4() | |
fps="Error" | |
out = None | |
out_file=[] | |
if img == None and inp !="": | |
try: | |
inp_out=inp.replace("https://","") | |
inp_out=inp_out.replace("/","_").replace(".","_").replace("=","_").replace("?","_") | |
if "twitter" in inp: | |
os.system(f'yt-dlp "{inp}" --extractor-arg "twitter:api=syndication" --trim-filenames 160 -o "{uid}/{inp_out}.mp4" -S res,mp4 --recode mp4') | |
else: | |
os.system(f'yt-dlp "{inp}" --trim-filenames 160 -o "{uid}/{inp_out}.mp4" -S res,mp4 --recode mp4') | |
out = f"{uid}/{inp_out}.mp4" | |
capture = cv2.VideoCapture(out) | |
fps = capture.get(cv2.CAP_PROP_FPS) | |
capture.release() | |
except Exception as e: | |
print(e) | |
out = None | |
elif img !=None and inp == "": | |
capture = cv2.VideoCapture(img) | |
fps = capture.get(cv2.CAP_PROP_FPS) | |
capture.release() | |
out = f"{img}" | |
return out | |
def csv(segments): | |
output = "" | |
for segment in segments: | |
output += f"{segment['start']},{segment['end']},{segment['text']}\n" | |
return output | |
def transcribe(path,lang,size): | |
#if size != current_size: | |
loaded_model = whisper.load_model(size) | |
current_size = size | |
results = loaded_model.transcribe(path, language=lang) | |
subs = ".csv" | |
if subs == "None": | |
return results["text"] | |
elif subs == ".csv": | |
return csv(results["segments"]) | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def run_gpt( | |
prompt_template, | |
stop_tokens, | |
max_tokens, | |
seed, | |
**prompt_kwargs, | |
): | |
print(seed) | |
timestamp=datetime.datetime.now() | |
generate_kwargs = dict( | |
temperature=0.9, | |
max_new_tokens=max_tokens, | |
top_p=0.95, | |
repetition_penalty=1.0, | |
do_sample=True, | |
seed=seed, | |
) | |
content = PREFIX.format( | |
timestamp=timestamp, | |
purpose="Compile the provided data and complete the users task" | |
) + prompt_template.format(**prompt_kwargs) | |
if VERBOSE: | |
print(LOG_PROMPT.format(content)) | |
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
#formatted_prompt = format_prompt(f'{content}', history) | |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
resp = "" | |
for response in stream: | |
resp += response.token.text | |
#yield resp | |
if VERBOSE: | |
print(LOG_RESPONSE.format(resp)) | |
return resp | |
def compress_data(c, instruct, history): | |
seed=random.randint(1,1000000000) | |
print (c) | |
#tot=len(purpose) | |
#print(tot) | |
divr=int(c)/MAX_DATA | |
divi=int(divr)+1 if divr != int(divr) else int(divr) | |
chunk = int(int(c)/divr) | |
print(f'chunk:: {chunk}') | |
print(f'divr:: {divr}') | |
print (f'divi:: {divi}') | |
out = [] | |
#out="" | |
s=0 | |
e=chunk | |
print(f'e:: {e}') | |
new_history="" | |
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n' | |
for z in range(divi): | |
print(f's:e :: {s}:{e}') | |
hist = history[s:e] | |
resp = run_gpt( | |
COMPRESS_DATA_PROMPT_SMALL, | |
stop_tokens=["observation:", "task:", "action:", "thought:"], | |
max_tokens=8192, | |
seed=seed, | |
direction=instruct, | |
knowledge="", | |
history=hist, | |
) | |
out.append(resp) | |
#new_history = resp | |
print (resp) | |
#out+=resp | |
e=e+chunk | |
s=s+chunk | |
return out | |
def compress_data_og(c, instruct, history): | |
seed=random.randint(1,1000000000) | |
print (c) | |
#tot=len(purpose) | |
#print(tot) | |
divr=int(c)/MAX_DATA | |
divi=int(divr)+1 if divr != int(divr) else int(divr) | |
chunk = int(int(c)/divr) | |
print(f'chunk:: {chunk}') | |
print(f'divr:: {divr}') | |
print (f'divi:: {divi}') | |
out = [] | |
#out="" | |
s=0 | |
e=chunk | |
print(f'e:: {e}') | |
new_history="" | |
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n' | |
for z in range(divi): | |
print(f's:e :: {s}:{e}') | |
hist = history[s:e] | |
resp = run_gpt( | |
COMPRESS_DATA_PROMPT, | |
stop_tokens=["observation:", "task:", "action:", "thought:"], | |
max_tokens=8192, | |
seed=seed, | |
direction=instruct, | |
knowledge=new_history, | |
history=hist, | |
) | |
new_history = resp | |
print (resp) | |
out+=resp | |
e=e+chunk | |
s=s+chunk | |
''' | |
resp = run_gpt( | |
COMPRESS_DATA_PROMPT, | |
stop_tokens=["observation:", "task:", "action:", "thought:"], | |
max_tokens=8192, | |
seed=seed, | |
direction=instruct, | |
knowledge=new_history, | |
history="All data has been recieved.", | |
)''' | |
print ("final" + resp) | |
#history = "observation: {}\n".format(resp) | |
return resp | |
def summarize(inp,history,report_check,sum_mem_check,data=None): | |
json_box=[] | |
error_box="" | |
json_out="" | |
if inp == "": | |
inp = "Process this data" | |
history.clear() | |
history = [(inp,"Working on it...")] | |
yield "",history,error_box,json_box | |
if data != "Error" and data != "" and data != None: | |
print(inp) | |
out = str(data) | |
rl = len(out) | |
print(f'rl:: {rl}') | |
c=1 | |
for i in str(out): | |
if i == " " or i=="," or i=="\n": | |
c +=1 | |
print (f'c:: {c}') | |
if sum_mem_check=="Memory": | |
#save_memory(inp,out) | |
rawp = "Complete" | |
if sum_mem_check=="Summarize": | |
json_out = compress_data(c,inp,out) | |
out = str(json_out) | |
if report_check: | |
rl = len(out) | |
print(f'rl:: {rl}') | |
c=1 | |
for i in str(out): | |
if i == " " or i=="," or i=="\n": | |
c +=1 | |
print (f'c2:: {c}') | |
rawp = compress_data_og(c,inp,out) | |
else: | |
rawp = out | |
else: | |
rawp = "Provide a valid data source" | |
history.clear() | |
history.append((inp,rawp)) | |
yield "", history,error_box,json_out | |
################################# | |
def clear_fn(): | |
return "",[(None,None)] | |
with gr.Blocks() as app: | |
gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer + Web</h1><h3>Summarize Data of unlimited length</h3>""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
inp_url = gr.Textbox(label="Video URL") | |
url_btn = gr.Button("Load Video") | |
vid = gr.Video() | |
trans_btn=gr.Button("Transcribe") | |
trans = gr.Textbox(interactive=True) | |
chatbot = gr.Chatbot(label="Mixtral 8x7B Chatbot",show_copy_button=True) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt=gr.Textbox(label = "Instructions (optional)") | |
with gr.Column(scale=1): | |
report_check=gr.Checkbox(label="Return Report", value=True) | |
sum_mem_check=gr.Radio(label="Output",choices=["Summary","Memory"]) | |
button=gr.Button() | |
#models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True) | |
with gr.Row(): | |
stop_button=gr.Button("Stop") | |
clear_btn = gr.Button("Clear") | |
with gr.Row(): | |
sz = gr.Dropdown(label="Model Size", choices=sizes, value='base') | |
lang = gr.Dropdown(label="Language (Optional)", choices=langs, value="en") | |
json_out=gr.JSON() | |
e_box=gr.Textbox() | |
#text=gr.JSON() | |
#inp_query.change(search_models,inp_query,models_dd) | |
url_btn.click(dl,[inp_url,vid],vid) | |
trans_btn.click(transcribe,[vid,lang,sz],trans) | |
clear_btn.click(clear_fn,None,[prompt,chatbot]) | |
go=button.click(summarize,[prompt,chatbot,report_check,sum_mem_check,trans],[prompt,chatbot,e_box,json_out]) | |
stop_button.click(None,None,None,cancels=[go]) | |
app.queue(default_concurrency_limit=20).launch(show_api=False) |