Spaces:
Runtime error
Runtime error
import gradio as gr | |
from models import models | |
from PIL import Image | |
import requests | |
import uuid | |
import io | |
import base64 | |
import torch | |
from diffusers import AutoPipelineForImage2Image | |
from diffusers.utils import make_image_grid, load_image | |
base_url=f'https://omnibus-top-20-img-img-basic.hf.space/file=' | |
loaded_model=[] | |
for i,model in enumerate(models): | |
try: | |
loaded_model.append(gr.load(f'models/{model}')) | |
except Exception as e: | |
print(e) | |
pass | |
print (loaded_model) | |
pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None, variant="fp16", use_safetensors=True).to("cpu") | |
def load_model(model_drop): | |
pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float32, use_safetensors=True) | |
def run_dif(prompt,im_path,model_drop,cnt,strength,guidance,infer): | |
out_box=[] | |
for i in range(int(cnt)): | |
yield out_box,f"Working on {i} of {int(cnt)}" | |
url = base_url+im_path | |
print(url) | |
init_image=load_image(url) | |
#image = pipeline(prompt, image=init_image, strength=0.8,guidance_scale=8.0,negative_prompt=negative_prompt,num_inference_steps=50).images[0] | |
image = pipeline(prompt, image=init_image, strength=float(strength),guidance_scale=float(guidance),num_inference_steps=int(infer)).images[0] | |
out_box.append(image) | |
yield out_box,"Complete" | |
css=""" | |
.grid_class{ | |
display:flex; | |
height:100%; | |
} | |
.img_class{ | |
min-width:200px; | |
} | |
""" | |
with gr.Blocks(css=css) as app: | |
with gr.Row(): | |
with gr.Column(): | |
inp=gr.Textbox(label="Prompt") | |
strength=gr.Slider(label="Strength",minimum=0,maximum=1,step=0.1,value=0.2) | |
guidance=gr.Slider(label="Guidance",minimum=0,maximum=10,step=0.1,value=8.0) | |
infer=gr.Slider(label="Inference Steps",minimum=0,maximum=50,step=1,value=10) | |
with gr.Row(): | |
btn=gr.Button() | |
stop_btn=gr.Button("Stop") | |
with gr.Column(): | |
inp_im=gr.Image(type='filepath') | |
im_btn=gr.Button("Image Grid") | |
with gr.Row(): | |
model_drop=gr.Dropdown(label="Models", choices=models, type='index', value=models[0]) | |
cnt = gr.Number(value=1) | |
out_html=gr.HTML() | |
outp=gr.Gallery(columns=10) | |
#fingal=gr.Gallery(columns=10) | |
#im_list=gr.Textbox() | |
#im_btn.click(load_im,inp_im,[outp,im_list]) | |
go_btn = btn.click(run_dif,[inp,inp_im,model_drop,cnt,strength,guidance,infer],[outp,out_html]) | |
stop_btn.click(None,None,None,cancels=[go_btn]) | |
app.queue().launch() |