Peter
:sparkles: update to blocks api
01d78f2
raw
history blame
8.03 kB
import logging
import time
from pathlib import Path
import gradio as gr
import nltk
from cleantext import clean
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
from utils import load_example_filenames, truncate_word_count
_here = Path(__file__).parent
nltk.download("stopwords") # TODO=find where this requirement originates from
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
def proc_submission(
input_text: str,
model_size: str,
num_beams,
token_batch_length,
length_penalty,
repetition_penalty,
no_repeat_ngram_size,
max_input_length: int = 768,
):
"""
proc_submission - a helper function for the gradio module
Parameters
----------
input_text : str, required, the text to be processed
max_input_length : int, optional, the maximum length of the input text, default=512
Returns
-------
str of HTML, the interactive HTML form for the model
"""
settings = {
"length_penalty": float(length_penalty),
"repetition_penalty": float(repetition_penalty),
"no_repeat_ngram_size": int(no_repeat_ngram_size),
"encoder_no_repeat_ngram_size": 4,
"num_beams": int(num_beams),
"min_length": 4,
"max_length": int(token_batch_length // 4),
"early_stopping": True,
"do_sample": False,
}
st = time.perf_counter()
history = {}
clean_text = clean(input_text, lower=False)
max_input_length = 1024 if model_size == "base" else max_input_length
processed = truncate_word_count(clean_text, max_input_length)
if processed["was_truncated"]:
tr_in = processed["truncated_text"]
msg = f"Input text was truncated to {max_input_length} words (based on whitespace)"
logging.warning(msg)
history["WARNING"] = msg
else:
tr_in = input_text
msg = None
_summaries = summarize_via_tokenbatches(
tr_in,
model_sm if model_size == "base" else model,
tokenizer_sm if model_size == "base" else tokenizer,
batch_length=token_batch_length,
**settings,
)
sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
sum_scores = [
f" - Section {i}: {round(s['summary_score'],4)}"
for i, s in enumerate(_summaries)
]
sum_text_out = "\n".join(sum_text)
history["Summary Scores"] = "<br><br>"
scores_out = "\n".join(sum_scores)
rt = round((time.perf_counter() - st) / 60, 2)
print(f"Runtime: {rt} minutes")
html = ""
html += f"<p>Runtime: {rt} minutes on CPU</p>"
if msg is not None:
html += f"<h2>WARNING:</h2><hr><b>{msg}</b><br><br>"
html += ""
return html, sum_text_out, scores_out
def load_single_example_text(
example_path: str or Path,
):
"""
load_single_example - a helper function for the gradio module to load examples
Returns:
list of str, the examples
"""
global name_to_path
full_ex_path = name_to_path[example_path]
full_ex_path = Path(full_ex_path)
# load the examples into a list
with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
raw_text = f.read()
text = clean(raw_text, lower=False)
return text
if __name__ == "__main__":
model, tokenizer = load_model_and_tokenizer("pszemraj/led-large-book-summary")
model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/led-base-book-summary")
name_to_path = load_example_filenames(_here / "examples")
logging.info(f"Loaded {len(name_to_path)} examples")
demo = gr.Blocks()
with demo:
gr.Markdown("# Long-Form Summarization: LED & BookSum")
gr.Markdown(
"A simple demo using a fine-tuned LED model to summarize long-form text. See [model card](https://huggingface.co/pszemraj/led-large-book-summary) for a notebook with GPU inference (much faster) on Colab."
)
with gr.Column():
gr.Markdown("## Load Inputs & Select Parameters")
gr.Markdown(
"Enter your text below or choose an example, and select the model size and parameters. Press the button to load examples."
)
model_size = gr.inputs.Radio(
choices=["base", "large"], label="model size", default="large"
)
num_beams = gr.inputs.Slider(
minimum=2, maximum=4, label="num_beams", default=2, step=1
)
token_batch_length = gr.inputs.Slider(
minimum=512,
maximum=1024,
label="token_batch_length",
default=512,
step=256,
)
length_penalty = gr.inputs.Slider(
minimum=0.5, maximum=1.0, label="length penalty", default=0.7, step=0.05
)
repetition_penalty = gr.inputs.Slider(
minimum=1.0,
maximum=5.0,
label="repetition penalty",
default=3.5,
step=0.1,
)
no_repeat_ngram_size = gr.inputs.Slider(
minimum=2, maximum=4, label="no repeat ngram size", default=3, step=1
)
example_name = gr.Dropdown(
list(name_to_path.keys()),
label="Load Example",
)
load_examples_button = gr.Button(
"Load Example",
)
input_text = gr.Textbox(
lines=6,
label="input text",
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
)
with gr.Column():
gr.Markdown("## Generate Summary")
gr.Markdown("Summary generation should take approximately 1-2 minutes for most settings.")
summarize_button = gr.Button("Summarize!")
output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
gr.Markdown("### Summary Output")
summary_text = gr.Textbox(
label="Summary", placeholder="The generated summary will appear here"
)
gr.Markdown(
"The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better:"
)
summary_scores = gr.Textbox(
label="Summary Scores", placeholder="Summary scores will appear here"
)
with gr.Column():
gr.Markdown("## About the Model")
gr.Markdown(
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
)
gr.Markdown(
"- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial."
)
load_examples_button.click(
fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
)
summarize_button.click(
fn=proc_submission,
inputs=[
input_text,
model_size,
num_beams,
token_batch_length,
length_penalty,
repetition_penalty,
no_repeat_ngram_size,
],
outputs=[output_text, summary_text, summary_scores],
)
demo.launch(enable_queue=True, prevent_thread_lock=True)