Spaces:
Runtime error
Runtime error
| import os | |
| #import agi | |
| import gradio as gr | |
| directory = "./app" | |
| #pa=os.environ['PASS'] | |
| import os | |
| import subprocess | |
| from hf_file import hf_file as hfwrite | |
| from huggingface_hub import InferenceClient,HfApi | |
| #import openai | |
| from text_generation import Client | |
| from pathlib import Path | |
| from prompts import ( | |
| ACTION_PROMPT, | |
| ADD_PROMPT, | |
| COMPRESS_HISTORY_PROMPT, | |
| LOG_PROMPT, | |
| LOG_RESPONSE, | |
| MODIFY_PROMPT, | |
| PREFIX, | |
| READ_PROMPT, | |
| TASK_PROMPT, | |
| UNDERSTAND_TEST_RESULTS_PROMPT, | |
| ) | |
| from utils import parse_action, parse_file_content, read_python_module_structure | |
| #API_TOKEN = os.getenv("HF_AUTH_TOKEN") | |
| VERBOSE = True | |
| MAX_HISTORY = 100 | |
| #MODEL = "gpt-3.5-turbo" # "gpt-4" | |
| API_PATHS = { | |
| "HuggingFaceM4/idefics-9b-instruct": ( | |
| "https://api-inference.huggingface.co/models/HuggingFaceM4/idefics-9b-instruct" | |
| ), | |
| "HuggingFaceM4/idefics-80b-instruct": ( | |
| "https://api-inference.huggingface.co/models/HuggingFaceM4/idefics-80b-instruct" | |
| ), | |
| } | |
| def run_gpt( | |
| prompt_template, | |
| stop_tokens, | |
| max_tokens, | |
| module_summary, | |
| purpose, | |
| **prompt_kwargs, | |
| ): | |
| client = InferenceClient( | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
| ) | |
| content = PREFIX.format( | |
| module_summary=module_summary, | |
| purpose=purpose, | |
| ) + prompt_template.format(**prompt_kwargs) | |
| if VERBOSE: | |
| print(LOG_PROMPT.format(content)) | |
| #query = prompt_list_to_tgi_input(formated_prompt_list) | |
| #stream = client.generate_stream(prompt=query, **generation_args) | |
| generation_args = { | |
| "max_new_tokens": max_tokens, | |
| "repetition_penalty": 1.0, | |
| "stop_sequences": stop_tokens, | |
| "do_sample": True, | |
| } | |
| #content = ([{"role": "system", "content": f"{content}"}]) | |
| #resp = client.generate( | |
| # prompt=([{"role": "system", "content": f"{content}"}],generation_args))["choices"][0]["message"]["content"] | |
| #resp = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| stream = client.text_generation(content, **generation_args, stream=True, details=True, return_full_text=False) | |
| resp = "" | |
| for response in stream: | |
| resp += response.token.text | |
| if VERBOSE: | |
| print(LOG_RESPONSE.format(resp)) | |
| return resp | |
| ''' | |
| def run_gpt( | |
| prompt_template, | |
| stop_tokens, | |
| max_tokens, | |
| module_summary, | |
| purpose, | |
| **prompt_kwargs, | |
| ): | |
| content = PREFIX.format( | |
| module_summary=module_summary, | |
| purpose=purpose, | |
| ) + prompt_template.format(**prompt_kwargs) | |
| if VERBOSE: | |
| print(LOG_PROMPT.format(content)) | |
| resp = openai.ChatCompletion.create( | |
| model=MODEL, | |
| messages=[ | |
| {"role": "system", "content": content}, | |
| ], | |
| temperature=0.0, | |
| max_tokens=max_tokens, | |
| stop=stop_tokens if stop_tokens else None, | |
| )["choices"][0]["message"]["content"] | |
| if VERBOSE: | |
| print(LOG_RESPONSE.format(resp)) | |
| return resp | |
| ''' | |
| def compress_history(purpose, task, history, directory): | |
| module_summary, _, _ = read_python_module_structure(directory) | |
| resp = run_gpt( | |
| COMPRESS_HISTORY_PROMPT, | |
| stop_tokens=["observation:", "task:", "action:", "thought:"], | |
| max_tokens=512, | |
| module_summary=module_summary, | |
| purpose=purpose, | |
| task=task, | |
| history=history, | |
| ) | |
| history = "observation: {}\n".format(resp) | |
| return history | |
| def call_main(purpose, task, history, directory, action_input,repo_name,hf_token): | |
| print("RUNNING MAIN") | |
| module_summary, _, _ = read_python_module_structure(directory) | |
| resp = run_gpt( | |
| ACTION_PROMPT, | |
| stop_tokens=["observation:", "task:"], | |
| max_tokens=256, | |
| module_summary=module_summary, | |
| purpose=purpose, | |
| task=task, | |
| history=history, | |
| ) | |
| lines = resp.strip().strip("\n").split("\n") | |
| for line in lines: | |
| if line == "": | |
| continue | |
| if line.startswith("thought: "): | |
| history += "{}\n".format(line) | |
| elif line.startswith("action: "): | |
| action_name, action_input = parse_action(line) | |
| history += "{}\n".format(line) | |
| return action_name, action_input, history, task | |
| else: | |
| history += "unknown action: {}".format(line) | |
| #assert False, "unknown action: {}".format(line) | |
| return "MAIN", None, history, task | |
| def call_test(purpose, task, history, directory, action_input,repo_name,hf_token): | |
| #directory = f"https://huggingface.co/spaces/{repo_name}/raw/main{directory.strip('.')}" | |
| result = subprocess.run( | |
| ["python", "-m", "pytest", "--collect-only", directory], | |
| capture_output=True, | |
| text=True, | |
| ) | |
| if result.returncode != 0: | |
| history += "observation: there are no tests! Test should be written in a test folder under {}\n".format( | |
| directory | |
| ) | |
| return "MAIN", None, history, task | |
| result = subprocess.run( | |
| ["python", "-m", "pytest", directory], capture_output=True, text=True | |
| ) | |
| if result.returncode == 0: | |
| history += "observation: tests pass\n" | |
| return "MAIN", None, history, task | |
| module_summary, content, _ = read_python_module_structure(directory) | |
| resp = run_gpt( | |
| UNDERSTAND_TEST_RESULTS_PROMPT, | |
| stop_tokens=[], | |
| max_tokens=256, | |
| module_summary=module_summary, | |
| purpose=purpose, | |
| task=task, | |
| history=history, | |
| stdout=result.stdout[:5000], # limit amount of text | |
| stderr=result.stderr[:5000], # limit amount of text | |
| ) | |
| history += "observation: tests failed: {}\n".format(resp) | |
| return "MAIN", None, history, task | |
| def call_set_task(purpose, task, history, directory, action_input,repo_name,hf_token): | |
| module_summary, content, _ = read_python_module_structure(directory) | |
| task = run_gpt( | |
| TASK_PROMPT, | |
| stop_tokens=[], | |
| max_tokens=64, | |
| module_summary=module_summary, | |
| purpose=purpose, | |
| task=task, | |
| history=history, | |
| ).strip("\n") | |
| history += "observation: task has been updated to: {}\n".format(task) | |
| return "MAIN", None, history, task | |
| def call_read(purpose, task, history, directory, action_input,repo_name,hf_token): | |
| #action_input1=f"https://huggingface.co/spaces/{repo_name}/raw/main/{action_input.split('./',1)[1]}" | |
| #print (f'DIRECTORY: {directory}') | |
| print (f'ACTION INPUT: {action_input}') | |
| if "'" in action_input: | |
| action_input.strip("'") | |
| if not os.path.exists(f"{action_input}"): | |
| history += "observation: file does not exist\n" | |
| return "MAIN", None, history, task | |
| #directory = f"https://huggingface.co/spaces/{repo_name}/raw/main{directory.strip('.')}" | |
| module_summary, content, _ = read_python_module_structure(directory) | |
| f_content = ( | |
| content[action_input] if content[action_input] else "< document is empty >" | |
| ) | |
| resp = run_gpt( | |
| READ_PROMPT, | |
| stop_tokens=[], | |
| max_tokens=256, | |
| module_summary=module_summary, | |
| purpose=purpose, | |
| task=task, | |
| history=history, | |
| file_path=action_input, | |
| file_contents=f_content, | |
| ).strip("\n") | |
| history += "observation: {}\n".format(resp) | |
| return "MAIN", None, history, task | |
| def call_modify(purpose, task, history, directory, action_input,repo_name,hf_token): | |
| #action_input1=f"https://huggingface.co/spaces/{repo_name}/raw/main/{action_input.split('./',1)[1]}" | |
| if "'" in action_input: | |
| action_input.strip("'") | |
| print (f'ACTION INPUT: {action_input}') | |
| if not os.path.exists(f"{action_input}"): | |
| history += "observation: file does not exist\n" | |
| return "MAIN", None, history, task | |
| ( | |
| module_summary, | |
| content, | |
| _, | |
| ) = read_python_module_structure(directory) | |
| f_content = ( | |
| content[action_input] if content[action_input] else "< document is empty >" | |
| ) | |
| resp = run_gpt( | |
| MODIFY_PROMPT, | |
| stop_tokens=["action:", "thought:", "observation:"], | |
| max_tokens=2048, | |
| module_summary=module_summary, | |
| purpose=purpose, | |
| task=task, | |
| history=history, | |
| file_path=action_input, | |
| file_contents=f_content, | |
| ) | |
| new_contents, description = parse_file_content(resp) | |
| if new_contents is None: | |
| history += "observation: failed to modify file\n" | |
| return "MAIN", None, history, task | |
| hfwrite(new_contents,action_input,repo_name,hf_token) | |
| with open(action_input, "w") as f: | |
| f.write(new_contents) | |
| #print (new_contents) | |
| history += "observation: file successfully modified\n" | |
| history += "obsertation: {}\n".format(description) | |
| return "MAIN", None, history, task | |
| def call_add(purpose, task, history, directory, action_input,repo_name,hf_token): | |
| d = os.path.dirname(action_input) | |
| if not d.startswith(directory): | |
| history += "observation: files must be under directory {}\n".format(directory) | |
| elif not action_input.endswith(".py"): | |
| history += "observation: can only write .py and .txt files\n" | |
| else: | |
| if d and not os.path.exists(d): | |
| os.makedirs(d) | |
| if not os.path.exists(action_input): | |
| module_summary, _, _ = read_python_module_structure(directory) | |
| resp = run_gpt( | |
| ADD_PROMPT, | |
| stop_tokens=["action:", "thought:", "observation:"], | |
| max_tokens=2048, | |
| module_summary=module_summary, | |
| purpose=purpose, | |
| task=task, | |
| history=history, | |
| file_path=action_input, | |
| ) | |
| new_contents, description = parse_file_content(resp) | |
| if new_contents is None: | |
| history += "observation: failed to write file\n" | |
| return "MAIN", None, history, task | |
| hfwrite(new_contents,action_input,repo_name,hf_token) | |
| with open(action_input, "w") as f: | |
| f.write(new_contents) | |
| print (f'filepath: {action_input}') | |
| print (f'filepath: {Path(action_input)}') | |
| #new_dir = Path(action_input) | |
| #input("File Added, Press key to Continue") | |
| history += "observation: file successfully written" | |
| history += "obsertation: {}\n".format(description) | |
| else: | |
| history += "observation: file already exists\n" | |
| return "MAIN", None, history, task | |
| def call_research(purpose, task, history, directory, action_input,repo_name,hf_token): | |
| history += "observation: cannot perform research on internet\n" | |
| return "MAIN", None, history, task | |
| def call_find(purpose, task, history, directory, action_input,repo_name,hf_token): | |
| history += "observation: have no ability to find external information\n" | |
| return "MAIN", None, history, task | |
| def call_run(purpose, task, history, directory, action_input,repo_name,hf_token): | |
| history += "observation: cannot install packages directly" | |
| return "MAIN", None, history, task | |
| NAME_TO_FUNC = { | |
| "MAIN": call_main, | |
| "UPDATE-TASK": call_set_task, | |
| "MODIFY-FILE": call_modify, | |
| "READ-FILE": call_read, | |
| "ADD-FILE": call_add, | |
| "TEST": call_test, | |
| "RESEARCH": call_research, | |
| "FIND": call_find, | |
| "RUN": call_run, | |
| } | |
| def run_action(purpose, task, history, directory, action_name, action_input,repo_name,hf_token): | |
| if action_name == "COMPLETE": | |
| exit(0) | |
| # compress the history when it is long | |
| if len(history.split("\n")) > MAX_HISTORY: | |
| if VERBOSE: | |
| print("COMPRESSING HISTORY") | |
| history = compress_history(purpose, task, history, directory) | |
| if action_name in NAME_TO_FUNC: | |
| assert action_name in NAME_TO_FUNC | |
| print(f"RUN: {action_name} ACTION_NAME: {action_input}") | |
| return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input,repo_name,hf_token) | |
| else: | |
| history += "observation: The TOOL I tried to use returned an error\n" | |
| return "UPDATE-TASK", None, history, task | |
| def run(purpose, directory, repo_name,hf_token,task=""): | |
| #openai.api_key = "" | |
| history = "" | |
| action_name = "UPDATE-TASK" if task == "" else "MAIN" | |
| action_input = None | |
| while True: | |
| print("") | |
| print("") | |
| print("---") | |
| print("purpose:", purpose) | |
| print("task:", task) | |
| print("---") | |
| print(history) | |
| print("---") | |
| action_name, action_input, history, task = run_action( | |
| purpose, | |
| task, | |
| history, | |
| directory, | |
| action_name, | |
| action_input, | |
| repo_name, | |
| hf_token, | |
| ) | |
| yield f'{history}' | |
| hf_tok=os.environ.get('HF_TOKEN') | |
| def run_ma(purpose,repo_name,hf_token): | |
| hf_token=hf_tok | |
| purpose = f'{purpose}' | |
| dr = run(purpose, directory,repo_name=repo_name,hf_token=hf_token) | |
| #dr = agi.run(purpose, directory,repo_name=repo_name,hf_token=hf_token) | |
| def checkp(inp): | |
| if inp == pa: | |
| return gr.update(visible=False), gr.update(visible=True) | |
| elif inp != pa: | |
| return gr.update(visible=True), gr.update(visible=False) | |
| with gr.Blocks() as app: | |
| with gr.Row(visible = False) as no: | |
| enterp = gr.Textbox() | |
| checkb=gr.Button() | |
| with gr.Box(visible=True) as go: | |
| with gr.Row(): | |
| box1=gr.Textbox(label="Repo/Name") | |
| box2=gr.Textbox(label="Write Token") | |
| box3=gr.Textbox(label="OpenAI API Token") | |
| go_btn=gr.Button() | |
| purp=gr.Textbox(label="Describe Python Program",lines=10) | |
| outp=gr.Textbox() | |
| #checkb.click(checkp,enterp,[no,go]) | |
| go_btn.click(run_ma,[purp,box1,box2],outp) | |
| app.launch(show_api=False) |