Spaces:
Running
Running
Upload dalle/models/stage2/transformer.py with huggingface_hub
Browse files
dalle/models/stage2/transformer.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Minimal DALL-E
|
3 |
+
# Copyright (c) 2021 KakaoBrain. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------
|
6 |
+
# Modified from minGPT (https://github.com/karpathy/minGPT)
|
7 |
+
# Copyright (c) 2020 Andrej Karpathy. All Rights Reserved.
|
8 |
+
# ------------------------------------------------------------------------------------
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
from typing import Optional, Tuple, List
|
13 |
+
from torch.cuda.amp import autocast
|
14 |
+
from omegaconf import OmegaConf
|
15 |
+
from .layers import Block
|
16 |
+
|
17 |
+
|
18 |
+
class Transformer1d(nn.Module):
|
19 |
+
|
20 |
+
def __init__(self,
|
21 |
+
vocab_size_txt: int,
|
22 |
+
vocab_size_img: int,
|
23 |
+
hparams: OmegaConf) -> None:
|
24 |
+
super().__init__()
|
25 |
+
assert hparams.n_layers == hparams.n_dense_layers
|
26 |
+
|
27 |
+
# input embedding for image and text
|
28 |
+
self.tok_emb_img = nn.Embedding(vocab_size_img, hparams.embed_dim)
|
29 |
+
self.tok_emb_txt = nn.Embedding(vocab_size_txt, hparams.embed_dim)
|
30 |
+
|
31 |
+
self.pos_emb_img = nn.Embedding(hparams.ctx_len_img, hparams.embed_dim)
|
32 |
+
self.pos_emb_txt = nn.Embedding(hparams.ctx_len_txt, hparams.embed_dim)
|
33 |
+
|
34 |
+
self.drop = nn.Dropout(hparams.embd_pdrop)
|
35 |
+
|
36 |
+
# transformer blocks
|
37 |
+
self.blocks = [Block(ctx_len=hparams.ctx_len_img + hparams.ctx_len_txt,
|
38 |
+
embed_dim=hparams.embed_dim,
|
39 |
+
n_heads=hparams.n_heads,
|
40 |
+
mlp_bias=hparams.mlp_bias,
|
41 |
+
attn_bias=hparams.attn_bias,
|
42 |
+
resid_pdrop=hparams.resid_pdrop,
|
43 |
+
attn_pdrop=hparams.attn_pdrop,
|
44 |
+
gelu_use_approx=hparams.gelu_use_approx) for i in range(1, hparams.n_layers+1)]
|
45 |
+
self.blocks = nn.Sequential(*self.blocks)
|
46 |
+
|
47 |
+
# heads for image and text
|
48 |
+
self.ln_f = nn.LayerNorm(hparams.embed_dim)
|
49 |
+
self.head_img = nn.Linear(hparams.embed_dim, vocab_size_img, bias=False)
|
50 |
+
self.head_txt = nn.Linear(hparams.embed_dim, vocab_size_txt, bias=False)
|
51 |
+
|
52 |
+
self.ctx_len_img = hparams.ctx_len_img
|
53 |
+
self.ctx_len_txt = hparams.ctx_len_txt
|
54 |
+
self.n_layers = hparams.n_layers
|
55 |
+
|
56 |
+
self.apply(self._init_weights)
|
57 |
+
|
58 |
+
def _init_weights(self, module: nn.Module) -> None:
|
59 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
60 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
61 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
62 |
+
module.bias.data.zero_()
|
63 |
+
elif isinstance(module, nn.LayerNorm):
|
64 |
+
module.bias.data.zero_()
|
65 |
+
module.weight.data.fill_(1.0)
|
66 |
+
|
67 |
+
def forward(self,
|
68 |
+
images: torch.LongTensor,
|
69 |
+
texts: torch.LongTensor,
|
70 |
+
pos_images: torch.LongTensor,
|
71 |
+
pos_texts: torch.LongTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
72 |
+
B, T = images.shape
|
73 |
+
_, N = texts.shape
|
74 |
+
|
75 |
+
assert T <= self.ctx_len_img, "Already reached the maximum context length (image)."
|
76 |
+
assert N == self.ctx_len_txt, "Already reached the maximum context length (text)."
|
77 |
+
|
78 |
+
texts = self.tok_emb_txt(texts)
|
79 |
+
images = self.tok_emb_img(images)
|
80 |
+
|
81 |
+
texts = texts + self.pos_emb_txt(pos_texts)
|
82 |
+
images = images + self.pos_emb_img(pos_images)
|
83 |
+
|
84 |
+
x = torch.cat([texts, images], axis=1).contiguous()
|
85 |
+
x = self.drop(x)
|
86 |
+
x = self.blocks(x)
|
87 |
+
x = self.ln_f(x)
|
88 |
+
|
89 |
+
texts = x[:, :N-1].contiguous()
|
90 |
+
images = x[:, N-1:-1].contiguous()
|
91 |
+
|
92 |
+
logits_txt = self.head_txt(texts)
|
93 |
+
logits_img = self.head_img(images)
|
94 |
+
return logits_img, logits_txt
|
95 |
+
|
96 |
+
@torch.no_grad()
|
97 |
+
def sampling(self,
|
98 |
+
images: torch.LongTensor,
|
99 |
+
texts: torch.LongTensor,
|
100 |
+
pos_images: torch.LongTensor,
|
101 |
+
pos_texts: torch.LongTensor,
|
102 |
+
use_fp16: bool = True,
|
103 |
+
past: Optional[List[torch.Tensor]] = None) -> Tuple[torch.FloatTensor, List[torch.FloatTensor]]:
|
104 |
+
_, N = texts.shape
|
105 |
+
assert N == self.ctx_len_txt, "Already reached the maximum context length (text)."
|
106 |
+
|
107 |
+
with autocast(enabled=use_fp16):
|
108 |
+
if images is None:
|
109 |
+
assert past is None
|
110 |
+
|
111 |
+
texts = self.tok_emb_txt(texts)
|
112 |
+
x = texts + self.pos_emb_txt(pos_texts)
|
113 |
+
x = self.drop(x)
|
114 |
+
|
115 |
+
presents = []
|
116 |
+
for i, block in enumerate(self.blocks):
|
117 |
+
x, present = block.sample(x, layer_past=None)
|
118 |
+
presents.append(present)
|
119 |
+
x = self.ln_f(x)
|
120 |
+
x = x[:, N-1].contiguous()
|
121 |
+
logits = self.head_img(x)
|
122 |
+
else:
|
123 |
+
if past is None:
|
124 |
+
texts = self.tok_emb_txt(texts)
|
125 |
+
images = self.tok_emb_img(images)
|
126 |
+
texts = texts + self.pos_emb_txt(pos_texts)
|
127 |
+
images = images + self.pos_emb_img(pos_images)
|
128 |
+
x = torch.cat([texts, images], axis=1).contiguous()
|
129 |
+
else:
|
130 |
+
images = self.tok_emb_img(images)
|
131 |
+
x = images + self.pos_emb_img(pos_images)
|
132 |
+
x = self.drop(x)
|
133 |
+
|
134 |
+
if past is not None:
|
135 |
+
past = torch.cat(past, dim=-2)
|
136 |
+
presents = []
|
137 |
+
for i, block in enumerate(self.blocks):
|
138 |
+
x, present = block.sample(x, layer_past=None if past is None else past[i])
|
139 |
+
presents.append(present)
|
140 |
+
x = self.ln_f(x)
|
141 |
+
x = x[:, -1].contiguous()
|
142 |
+
logits = self.head_img(x)
|
143 |
+
return logits, presents
|
144 |
+
|
145 |
+
def from_ckpt(self, path: str) -> None:
|
146 |
+
ckpt = torch.load(path, map_location='cpu')['state_dict']
|
147 |
+
self.load_state_dict(ckpt, strict=True)
|
148 |
+
print(f'{path} succesfully restored..')
|
149 |
+
|
150 |
+
|
151 |
+
class iGPT(nn.Module):
|
152 |
+
def __init__(self,
|
153 |
+
vocab_size_img: int,
|
154 |
+
use_cls_cond: bool,
|
155 |
+
hparams: OmegaConf) -> None:
|
156 |
+
super().__init__()
|
157 |
+
self.use_cls_cond = use_cls_cond
|
158 |
+
|
159 |
+
# sos token embedding
|
160 |
+
if self.use_cls_cond:
|
161 |
+
self.sos = nn.Embedding(hparams.n_classes, hparams.embed_dim)
|
162 |
+
else:
|
163 |
+
self.sos = nn.Parameter(torch.randn(1, 1, hparams.embed_dim))
|
164 |
+
|
165 |
+
# input embedding
|
166 |
+
self.tok_emb_img = nn.Embedding(vocab_size_img, hparams.embed_dim)
|
167 |
+
self.pos_emb_img = nn.Embedding(hparams.ctx_len_img, hparams.embed_dim)
|
168 |
+
|
169 |
+
self.drop = nn.Dropout(hparams.embd_pdrop)
|
170 |
+
|
171 |
+
# transformer blocks
|
172 |
+
self.blocks = [Block(ctx_len=hparams.ctx_len_img + 1,
|
173 |
+
embed_dim=hparams.embed_dim,
|
174 |
+
n_heads=hparams.n_heads,
|
175 |
+
mlp_bias=hparams.mlp_bias,
|
176 |
+
attn_bias=hparams.attn_bias,
|
177 |
+
resid_pdrop=hparams.resid_pdrop,
|
178 |
+
attn_pdrop=hparams.attn_pdrop,
|
179 |
+
gelu_use_approx=hparams.gelu_use_approx) for i in range(1, hparams.n_layers+1)]
|
180 |
+
self.blocks = nn.Sequential(*self.blocks)
|
181 |
+
|
182 |
+
# head
|
183 |
+
self.ln_f = nn.LayerNorm(hparams.embed_dim)
|
184 |
+
self.head = nn.Linear(hparams.embed_dim, vocab_size_img, bias=False)
|
185 |
+
|
186 |
+
self.ctx_len_img = hparams.ctx_len_img
|
187 |
+
self.n_layers = hparams.n_layers
|
188 |
+
|
189 |
+
self.apply(self._init_weights)
|
190 |
+
|
191 |
+
def _init_weights(self, module: nn.Module) -> None:
|
192 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
193 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
194 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
195 |
+
module.bias.data.zero_()
|
196 |
+
elif isinstance(module, nn.LayerNorm):
|
197 |
+
module.bias.data.zero_()
|
198 |
+
module.weight.data.fill_(1.0)
|
199 |
+
|
200 |
+
@torch.no_grad()
|
201 |
+
def sampling(self,
|
202 |
+
sos: torch.FloatTensor,
|
203 |
+
codes: torch.LongTensor,
|
204 |
+
pos_codes: torch.LongTensor,
|
205 |
+
n_samples: int = 16,
|
206 |
+
use_fp16: bool = True,
|
207 |
+
past: Optional[torch.Tensor] = None) -> Tuple[torch.FloatTensor, List[torch.FloatTensor]]:
|
208 |
+
with autocast(enabled=use_fp16):
|
209 |
+
if codes is None:
|
210 |
+
assert past is None
|
211 |
+
xs = self.drop(sos)
|
212 |
+
presents = []
|
213 |
+
for i, block in enumerate(self.blocks):
|
214 |
+
xs, present = block.sample(xs, layer_past=None)
|
215 |
+
presents.append(present)
|
216 |
+
xs = self.ln_f(xs)
|
217 |
+
logits = self.head(xs)[:, -1]
|
218 |
+
else:
|
219 |
+
if past is None:
|
220 |
+
xs = self.tok_emb_img(codes) + self.pos_emb_img(pos_codes)
|
221 |
+
xs = torch.cat([sos, xs], dim=1)
|
222 |
+
else:
|
223 |
+
xs = self.tok_emb_img(codes) + self.pos_emb_img(pos_codes)
|
224 |
+
xs = self.drop(xs)
|
225 |
+
|
226 |
+
past = torch.cat(past, dim=-2) if past is not None else past
|
227 |
+
presents = []
|
228 |
+
for i, block in enumerate(self.blocks):
|
229 |
+
xs, present = block.sample(xs, layer_past=None if past is None else past[i])
|
230 |
+
presents.append(present)
|
231 |
+
|
232 |
+
xs = self.ln_f(xs)
|
233 |
+
logits = self.head(xs)[:, -1]
|
234 |
+
return logits, presents
|
235 |
+
|
236 |
+
def forward(self,
|
237 |
+
codes: torch.LongTensor,
|
238 |
+
labels: Optional[torch.LongTensor] = None) -> torch.FloatTensor:
|
239 |
+
B, T = codes.shape
|
240 |
+
xps = torch.arange(T, device=codes.device).repeat((B, 1))
|
241 |
+
sos = self.sos.repeat((B, 1, 1)) if labels is None else self.sos(labels).unsqueeze(1)
|
242 |
+
|
243 |
+
h = self.tok_emb_img(codes) + self.pos_emb_img(xps)
|
244 |
+
h = torch.cat([sos, h[:, :-1]], dim=1).contiguous()
|
245 |
+
|
246 |
+
h = self.drop(h)
|
247 |
+
h = self.blocks(h)
|
248 |
+
h = self.ln_f(h)
|
249 |
+
logits = self.head(h)
|
250 |
+
return logits
|
251 |
+
|
252 |
+
def from_ckpt(self, path: str, strict: bool = True) -> None:
|
253 |
+
ckpt = torch.load(path, map_location='cpu')['state_dict']
|
254 |
+
self.load_state_dict(ckpt, strict=strict)
|
255 |
+
print(f'{path} successfully restored..')
|