Spaces:
Running
Running
Upload dalle/utils/utils.py with huggingface_hub
Browse files- dalle/utils/utils.py +84 -0
dalle/utils/utils.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Minimal DALL-E
|
3 |
+
# Copyright (c) 2021 KakaoBrain. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------
|
6 |
+
|
7 |
+
import os
|
8 |
+
import random
|
9 |
+
import urllib
|
10 |
+
import hashlib
|
11 |
+
import tarfile
|
12 |
+
import torch
|
13 |
+
import clip
|
14 |
+
import numpy as np
|
15 |
+
from PIL import Image
|
16 |
+
from torch.nn import functional as F
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
|
20 |
+
def set_seed(seed: int):
|
21 |
+
random.seed(seed)
|
22 |
+
np.random.seed(seed)
|
23 |
+
torch.manual_seed(seed)
|
24 |
+
torch.cuda.manual_seed_all(seed)
|
25 |
+
|
26 |
+
|
27 |
+
@torch.no_grad()
|
28 |
+
def clip_score(prompt: str,
|
29 |
+
images: np.ndarray,
|
30 |
+
model_clip: torch.nn.Module,
|
31 |
+
preprocess_clip,
|
32 |
+
device: str) -> np.ndarray:
|
33 |
+
images = [preprocess_clip(Image.fromarray((image*255).astype(np.uint8))) for image in images]
|
34 |
+
images = torch.stack(images, dim=0).to(device=device)
|
35 |
+
texts = clip.tokenize(prompt).to(device=device)
|
36 |
+
texts = torch.repeat_interleave(texts, images.shape[0], dim=0)
|
37 |
+
|
38 |
+
image_features = model_clip.encode_image(images)
|
39 |
+
text_features = model_clip.encode_text(texts)
|
40 |
+
|
41 |
+
scores = F.cosine_similarity(image_features, text_features).squeeze()
|
42 |
+
rank = torch.argsort(scores, descending=True).cpu().numpy()
|
43 |
+
return rank
|
44 |
+
|
45 |
+
|
46 |
+
def download(url: str, root: str) -> str:
|
47 |
+
os.makedirs(root, exist_ok=True)
|
48 |
+
filename = os.path.basename(url)
|
49 |
+
pathname = filename[:-len('.tar.gz')]
|
50 |
+
|
51 |
+
expected_md5 = url.split("/")[-2]
|
52 |
+
download_target = os.path.join(root, filename)
|
53 |
+
result_path = os.path.join(root, pathname)
|
54 |
+
|
55 |
+
#if os.path.isfile(download_target) and (os.path.exists(result_path) and not os.path.isfile(result_path)):
|
56 |
+
#return result_path
|
57 |
+
|
58 |
+
with urllib.request.urlopen(url) as source, open(download_target, 'wb') as output:
|
59 |
+
with tqdm(total=int(source.info().get('Content-Length')), ncols=80, unit='iB', unit_scale=True,
|
60 |
+
unit_divisor=1024) as loop:
|
61 |
+
while True:
|
62 |
+
buffer = source.read(8192)
|
63 |
+
if not buffer:
|
64 |
+
break
|
65 |
+
|
66 |
+
output.write(buffer)
|
67 |
+
loop.update(len(buffer))
|
68 |
+
|
69 |
+
# if hashlib.md5(open(download_target, 'rb').read()).hexdigest() != expected_md5:
|
70 |
+
# raise RuntimeError(f'Model has been downloaded but the md5 checksum does not not match')
|
71 |
+
|
72 |
+
with tarfile.open(download_target, 'r:gz') as f:
|
73 |
+
pbar = tqdm(f.getmembers(), total=len(f.getmembers()))
|
74 |
+
for member in pbar:
|
75 |
+
pbar.set_description(f'extracting: {member.name} (size:{member.size // (1024 * 1024)}MB)')
|
76 |
+
f.extract(member=member, path=root)
|
77 |
+
|
78 |
+
return result_path
|
79 |
+
|
80 |
+
|
81 |
+
def realpath_url_or_path(url_or_path: str, root: str = None) -> str:
|
82 |
+
if urllib.parse.urlparse(url_or_path).scheme in ('http', 'https'):
|
83 |
+
return download(url_or_path, root)
|
84 |
+
return url_or_path
|