Spaces:
Running
Running
import os | |
import sys | |
import base64 | |
from io import BytesIO | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
import torch | |
from torch import nn | |
from fastapi import FastAPI | |
import numpy as np | |
from PIL import Image | |
from dalle.models import Dalle | |
import logging | |
import streamlit as st | |
print("Loading models...") | |
app = FastAPI() | |
from huggingface_hub import hf_hub_download | |
logging.info("Start downloading") | |
full_dict_path = hf_hub_download(repo_id="ml6team/logo-generator", filename="full_dict_new.ckpt", | |
use_auth_token=st.secrets["model_download"]) | |
logging.info("End downloading") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = Dalle.from_pretrained("minDALL-E/1.3B") | |
model.load_state_dict(torch.load(full_dict_path, map_location=torch.device('cpu'))) | |
model.to(device=device) | |
print("Models loaded !") | |
def read_root(): | |
return {"minDALL-E!"} | |
def generate(prompt): | |
images = sample(prompt) | |
images = [to_base64(image) for image in images] | |
return {"images": images} | |
def sample(prompt): | |
# Sampling | |
logging.info("starting sampling") | |
images = ( | |
model.sampling(prompt=prompt, top_k=96, top_p=None, softmax_temperature=1.0, num_candidates=9, device=device) | |
.cpu() | |
.numpy() | |
) | |
logging.info("sampling succeeded") | |
images = np.transpose(images, (0, 2, 3, 1)) | |
pil_images = [] | |
for i in range(len(images)): | |
im = Image.fromarray((images[i] * 255).astype(np.uint8)) | |
pil_images.append(im) | |
return pil_images | |
def to_base64(pil_image): | |
buffered = BytesIO() | |
pil_image.save(buffered, format="JPEG") | |
return base64.b64encode(buffered.getvalue()) |