Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_client import Client | |
from huggingface_hub import InferenceClient | |
import random | |
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/") | |
models=[ | |
"google/gemma-7b", | |
"google/gemma-7b-it", | |
"google/gemma-2b", | |
"google/gemma-2b-it" | |
] | |
clients=[ | |
InferenceClient(models[0]), | |
InferenceClient(models[1]), | |
InferenceClient(models[2]), | |
InferenceClient(models[3]), | |
] | |
VERBOSE=True | |
def format_prompt(message, history): | |
prompt = "" | |
if history: | |
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model | |
for user_prompt, bot_response in history: | |
prompt += f"{user_prompt}\n" | |
#print(prompt) | |
prompt += f"{bot_response}\n" | |
#print(prompt) | |
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model" | |
return prompt | |
def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem): | |
#token max=8192 | |
hist_len=0 | |
client=clients[int(client_choice)-1] | |
if not history: | |
history = [] | |
hist_len=0 | |
if not memory: | |
memory = [] | |
mem_len=0 | |
if memory: | |
for ea in memory[0-chat_mem:]: | |
hist_len+=len(str(ea)) | |
in_len=len(system_prompt+prompt)+hist_len | |
if (in_len+tokens) > 8000: | |
history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value")) | |
yield history,memory | |
else: | |
generate_kwargs = dict( | |
temperature=temp, | |
max_new_tokens=tokens, | |
top_p=top_p, | |
repetition_penalty=rep_p, | |
do_sample=True, | |
seed=seed, | |
) | |
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:]) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield [(prompt,output)],memory | |
history.append((prompt,output)) | |
memory.append((prompt,output)) | |
yield history,memory | |
if VERBOSE==True: | |
print("\n######### HIST "+str(in_len)) | |
print("\n######### TOKENS "+str(tokens)) | |
print("\n######### PROMPT "+str(len(formatted_prompt))) | |
def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True): | |
print(chatblock) | |
tog = 0 | |
if chatblock: | |
tog = 3 | |
result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script") | |
out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}' | |
print(out) | |
return out | |
def clear_fn(): | |
return None,None,None,None | |
rand_val=random.randint(1,1111111111111111) | |
def check_rand(inp,val): | |
if inp==True: | |
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111)) | |
else: | |
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val)) | |
with gr.Blocks() as app: | |
memory=gr.State() | |
gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""") | |
chat_b = gr.Chatbot(height=500) | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(scale=3): | |
inp = gr.Textbox(label="Prompt") | |
sys_inp = gr.Textbox(label="System Prompt (optional)") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
btn = gr.Button("Chat") | |
with gr.Column(scale=1): | |
with gr.Group(): | |
stop_btn=gr.Button("Stop") | |
clear_btn=gr.Button("Clear") | |
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True) | |
with gr.Column(scale=1): | |
with gr.Group(): | |
rand = gr.Checkbox(label="Random Seed", value=True) | |
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val) | |
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens") | |
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9) | |
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9) | |
rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0) | |
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4) | |
with gr.Accordion(label="Screenshot",open=False): | |
with gr.Row(): | |
with gr.Column(scale=3): | |
im_btn=gr.Button("Screenshot") | |
img=gr.Image(type='filepath') | |
with gr.Column(scale=1): | |
with gr.Row(): | |
im_height=gr.Number(label="Height",value=5000) | |
im_width=gr.Number(label="Width",value=500) | |
wait_time=gr.Number(label="Wait Time",value=3000) | |
theme=gr.Radio(label="Theme", choices=["light","dark"],value="light") | |
chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True) | |
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img) | |
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem],[chat_b,memory]) | |
go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem],[chat_b,memory]) | |
stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub]) | |
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory]) | |
app.queue(default_concurrency_limit=10).launch() |