Spaces:
Runtime error
Runtime error
import gradio as gr | |
from diffusers import AutoencoderKL, StableDiffusionXLControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
import torch | |
from controlnet_aux import OpenposeDetector | |
from diffusers.utils import load_image | |
# Compute openpose conditioning image. | |
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") | |
image = load_image( | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/person.png" | |
) | |
openpose_image = openpose(image) | |
# Initialize ControlNet pipeline. | |
controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0") | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet | |
) | |
#pipe.enable_model_cpu_offload() | |
def pose_calc(): | |
# Infer. | |
prompt = "Darth vader dancing in a desert, high quality" | |
negative_prompt = "low quality, bad quality" | |
images = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=25, | |
num_images_per_prompt=4, | |
image=openpose_image.resize((1024, 1024)), | |
generator=torch.manual_seed(97), | |
).images | |
return images[0] | |
gr.Interface(fn=pose_calc, | |
inputs=None, | |
outputs=gr.Image | |
).launch() |