patrickvonplaten's picture
Update app.py
e5d785e
raw
history blame
1.93 kB
from controlnet_aux import OpenposeDetector
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler
import gradio as gr
import torch
# Constants
low_threshold = 100
high_threshold = 200
# Models
pose_model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"andite/anything-v4.0", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# This command loads the individual model components on GPU on-demand. So, we don't
# need to explicitly call pipe.to("cuda").
pipe.enable_model_cpu_offload()
# xformers
pipe.enable_xformers_memory_efficient_attention()
# Generator seed,
generator = torch.manual_seed(0)
def get_pose(image):
return pose_model(image)
def generate_images(image, prompt):
pose = get_pose(image)
output = pipe(
prompt,
pose,
generator=generator,
num_images_per_prompt=3,
num_inference_steps=20,
)
all_outputs = []
all_outputs.append(pose)
for image in output.images:
all_outputs.append(image)
return all_outputs
gr.Interface(
generate_images,
inputs=[
gr.Image(type="pil"),
gr.Textbox(
label="Enter your prompt",
max_lines=1,
placeholder="best quality, extremely detailed",
),
],
outputs=gr.Gallery().style(grid=[2], height="auto"),
title="Generate controlled outputs with ControlNet and Stable Diffusion. ",
description="This Space uses pose estimated lines as the additional conditioning.",
examples=[["yoga1.jpeg", "best quality, extremely detailed"]],
allow_flagging=False,
).launch(enable_queue=True)