Spaces:
Running
Running
import gradio as gr | |
import base64 | |
import random | |
import gradio as gr | |
#import urllib.request | |
import requests | |
import bs4 | |
import lxml | |
import os | |
#import subprocess | |
from huggingface_hub import InferenceClient,HfApi | |
import random | |
import json | |
import datetime | |
from pypdf import PdfReader | |
import uuid | |
#from query import tasks | |
from gradio_client import Client | |
from agent import ( | |
PREFIX, | |
GET_CHART, | |
COMPRESS_DATA_PROMPT, | |
COMPRESS_DATA_PROMPT_SMALL, | |
LOG_PROMPT, | |
LOG_RESPONSE, | |
) | |
api=HfApi() | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
def sort_fn(inp): | |
client_sort = Client("Omnibus/sort_document") | |
sen,nouns = client_sort.predict( | |
f"{inp}", # str in 'Paste Text' Textbox component | |
api_name="/sort_doc" | |
) | |
return nouns | |
def find_all(url): | |
return_list=[] | |
print (url) | |
#if action_input in query.tasks: | |
print (f"trying URL:: {url}") | |
try: | |
if url != "" and url != None: | |
out = [] | |
source = requests.get(url) | |
#source = urllib.request.urlopen(url).read() | |
soup = bs4.BeautifulSoup(source.content,'lxml') | |
rawp=(f'RAW TEXT RETURNED: {soup.text}') | |
cnt=0 | |
cnt+=len(rawp) | |
out.append(rawp) | |
out.append("HTML fragments: ") | |
q=("a","p","span","content","article") | |
for p in soup.find_all("a"): | |
out.append([{"LINK TITLE":p.get('title'),"URL":p.get('href'),"STRING":p.string}]) | |
print(rawp) | |
return True, rawp | |
else: | |
return False, "Enter Valid URL" | |
except Exception as e: | |
print (e) | |
return False, f'Error: {e}' | |
#else: | |
# history = "observation: The search query I used did not return a valid response" | |
return "MAIN", None, history, task | |
FIND_KEYWORDS="""Find keywords from the dictionary of provided keywords that are relevant to the users query. | |
Return the keyword:value pairs from the list in the form of a JSON file output. | |
dictionary: | |
{keywords} | |
user query: | |
""" | |
def find_keyword_fn(c,inp,data): | |
data=str(data) | |
seed=random.randint(1,1000000000) | |
divr=int(c)/20000 | |
divi=int(divr)+1 if divr != int(divr) else int(divr) | |
chunk = int(int(c)/divr) | |
out = [] | |
s=0 | |
e=chunk | |
print(f'e:: {e}') | |
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n' | |
for z in range(divi): | |
print(f's:e :: {s}:{e}') | |
hist = data[s:e] | |
resp = run_gpt( | |
FIND_KEYWORDS, | |
stop_tokens=[], | |
max_tokens=8192, | |
seed=seed, | |
keywords=data, | |
).strip("\n") | |
out.append(resp) | |
#new_history = resp | |
print (resp) | |
#out+=resp | |
e=e+chunk | |
s=s+chunk | |
return out | |
def read_txt(txt_path): | |
text="" | |
with open(txt_path,"r") as f: | |
text = f.read() | |
f.close() | |
print (text) | |
return text | |
def read_pdf(pdf_path): | |
text="" | |
reader = PdfReader(f'{pdf_path}') | |
number_of_pages = len(reader.pages) | |
for i in range(number_of_pages): | |
page = reader.pages[i] | |
text = f'{text}\n{page.extract_text()}' | |
print (text) | |
return text | |
error_box=[] | |
def read_pdf_online(url): | |
uid=uuid.uuid4() | |
print(f"reading {url}") | |
response = requests.get(url, stream=True) | |
print(response.status_code) | |
text="" | |
################# | |
##################### | |
try: | |
if response.status_code == 200: | |
with open("test.pdf", "wb") as f: | |
f.write(response.content) | |
#f.close() | |
#out = Path("./data.pdf") | |
#print (out) | |
reader = PdfReader("test.pdf") | |
number_of_pages = len(reader.pages) | |
print(number_of_pages) | |
for i in range(number_of_pages): | |
page = reader.pages[i] | |
text = f'{text}\n{page.extract_text()}' | |
print(f"PDF_TEXT:: {text}") | |
return text | |
else: | |
text = response.status_code | |
error_box.append(url) | |
print(text) | |
return text | |
except Exception as e: | |
print (e) | |
return e | |
VERBOSE = True | |
MAX_HISTORY = 100 | |
MAX_DATA = 20000 | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def run_gpt_no_prefix( | |
prompt_template, | |
stop_tokens, | |
max_tokens, | |
seed, | |
**prompt_kwargs, | |
): | |
print(seed) | |
try: | |
generate_kwargs = dict( | |
temperature=0.9, | |
max_new_tokens=max_tokens, | |
top_p=0.95, | |
repetition_penalty=1.0, | |
do_sample=True, | |
seed=seed, | |
) | |
content = prompt_template.format(**prompt_kwargs) | |
#if VERBOSE: | |
print(LOG_PROMPT.format(content)) | |
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
#formatted_prompt = format_prompt(f'{content}', history) | |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
resp = "" | |
for response in stream: | |
resp += response.token.text | |
#yield resp | |
#if VERBOSE: | |
print(LOG_RESPONSE.format(resp)) | |
return resp | |
except Exception as e: | |
print(f'no_prefix_error:: {e}') | |
return "Error" | |
def run_gpt( | |
prompt_template, | |
stop_tokens, | |
max_tokens, | |
seed, | |
**prompt_kwargs, | |
): | |
print(seed) | |
timestamp=datetime.datetime.now() | |
generate_kwargs = dict( | |
temperature=0.9, | |
max_new_tokens=max_tokens, | |
top_p=0.95, | |
repetition_penalty=1.0, | |
do_sample=True, | |
seed=seed, | |
) | |
content = PREFIX.format( | |
timestamp=timestamp, | |
purpose="Compile the provided data and complete the users task" | |
) + prompt_template.format(**prompt_kwargs) | |
#if VERBOSE: | |
print(LOG_PROMPT.format(content)) | |
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
#formatted_prompt = format_prompt(f'{content}', history) | |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
resp = "" | |
for response in stream: | |
resp += response.token.text | |
#yield resp | |
if VERBOSE: | |
print(LOG_RESPONSE.format(resp)) | |
return resp | |
def compress_data(c, instruct, history): | |
seed=random.randint(1,1000000000) | |
print (c) | |
#tot=len(purpose) | |
#print(tot) | |
divr=int(c)/MAX_DATA | |
divi=int(divr)+1 if divr != int(divr) else int(divr) | |
chunk = int(int(c)/divr) | |
print(f'chunk:: {chunk}') | |
print(f'divr:: {divr}') | |
print (f'divi:: {divi}') | |
out = [] | |
#out="" | |
s=0 | |
e=chunk | |
print(f'e:: {e}') | |
new_history="" | |
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n' | |
for z in range(divi): | |
print(f's:e :: {s}:{e}') | |
hist = history[s:e] | |
resp = run_gpt( | |
COMPRESS_DATA_PROMPT_SMALL, | |
stop_tokens=["observation:", "task:", "action:", "thought:"], | |
max_tokens=8192, | |
seed=seed, | |
direction=instruct, | |
knowledge="", | |
history=hist, | |
).strip("\n") | |
out.append(resp) | |
#new_history = resp | |
print (resp) | |
#out+=resp | |
e=e+chunk | |
s=s+chunk | |
return out | |
def compress_data_og(c, instruct, history): | |
seed=random.randint(1,1000000000) | |
print (c) | |
#tot=len(purpose) | |
#print(tot) | |
divr=int(c)/MAX_DATA | |
divi=int(divr)+1 if divr != int(divr) else int(divr) | |
chunk = int(int(c)/divr) | |
print(f'chunk:: {chunk}') | |
print(f'divr:: {divr}') | |
print (f'divi:: {divi}') | |
out = [] | |
#out="" | |
s=0 | |
e=chunk | |
print(f'e:: {e}') | |
new_history="" | |
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n' | |
for z in range(divi): | |
print(f's:e :: {s}:{e}') | |
hist = history[s:e] | |
resp = run_gpt( | |
COMPRESS_DATA_PROMPT, | |
stop_tokens=["observation:", "task:", "action:", "thought:"], | |
max_tokens=8192, | |
seed=seed, | |
direction=instruct, | |
knowledge=new_history, | |
history=hist, | |
).strip("\n") | |
new_history = resp | |
print (resp) | |
out+=resp | |
e=e+chunk | |
s=s+chunk | |
''' | |
resp = run_gpt( | |
COMPRESS_DATA_PROMPT, | |
stop_tokens=["observation:", "task:", "action:", "thought:"], | |
max_tokens=8192, | |
seed=seed, | |
direction=instruct, | |
knowledge=new_history, | |
history="All data has been recieved.", | |
)''' | |
print ("final" + resp) | |
#history = "observation: {}\n".format(resp) | |
return resp | |
def get_chart(inp): | |
seed=random.randint(1,1000000000) | |
try: | |
resp = run_gpt_no_prefix( | |
GET_CHART, | |
stop_tokens=[], | |
max_tokens=8192, | |
seed=seed, | |
inp=inp, | |
).strip("\n") | |
print(resp) | |
except Exception as e: | |
print(f'Error:: {e}') | |
resp = e | |
return resp | |
def format_json(inp): | |
print("FORMATTING:::") | |
print(type(inp)) | |
print("###########") | |
print(inp) | |
print("###########") | |
print("###########") | |
new_str="" | |
matches=["```","#","//"] | |
for i,line in enumerate(inp): | |
line = line.strip() | |
print(line) | |
#if not any(x in line for x in matches): | |
new_str+=line.strip("\n").strip("```").strip("#").strip("//") | |
print("###########") | |
print("###########") | |
#inp = inp.strip("<\s>") | |
new_str=new_str.strip("</s>") | |
out_json=eval(new_str) | |
print(out_json) | |
print("###########") | |
print("###########") | |
return out_json | |
def mm(graph): | |
code_out="" | |
for ea in graph.split("\n"): | |
code=ea.strip().strip("\n") | |
code_out+=code | |
#out_html=f'''<div><iframe src="https://omnibus-mermaid-script.static.hf.space/index.html?mermaid={code_out}&rand={random.randint(1,1111111111)}" height="500" width="500"></iframe></div>''' | |
out_html=f'''<div><iframe src="https://omnibus-mermaid-script.static.hf.space/index.html?mermaid={code_out}" height="500" width="500"></iframe></div>''' | |
return out_html | |
def summarize(inp,history,data=None,files=None,directory=None,url=None,pdf_url=None,pdf_batch=None): | |
json_box=[] | |
chart_out="" | |
if inp == "": | |
inp = "Process this data" | |
history.clear() | |
history = [(inp,"Working on it...")] | |
yield "",history,chart_out,chart_out,json_box | |
if pdf_batch.startswith("http"): | |
c=0 | |
data="" | |
for i in str(pdf_batch): | |
if i==",": | |
c+=1 | |
print (f'c:: {c}') | |
try: | |
for i in range(c+1): | |
batch_url = pdf_batch.split(",",c)[i] | |
bb = read_pdf_online(batch_url) | |
data=f'{data}\nFile Name URL ({batch_url}):\n{bb}' | |
except Exception as e: | |
print(e) | |
#data=f'{data}\nError reading URL ({batch_url})' | |
if directory: | |
for ea in directory: | |
print(ea) | |
if pdf_url.startswith("http"): | |
print("PDF_URL") | |
out = read_pdf_online(pdf_url) | |
data=out | |
if url.startswith("http"): | |
val, out = find_all(url) | |
if not val: | |
data="Error" | |
rawp = str(out) | |
else: | |
data=out | |
if files: | |
for i, file in enumerate(files): | |
try: | |
print (file) | |
if file.endswith(".pdf"): | |
zz=read_pdf(file) | |
print (zz) | |
data=f'{data}\nFile Name ({file}):\n{zz}' | |
elif file.endswith(".txt"): | |
zz=read_txt(file) | |
print (zz) | |
data=f'{data}\nFile Name ({file}):\n{zz}' | |
except Exception as e: | |
data=f'{data}\nError opening File Name ({file})' | |
print (e) | |
if data != "Error" and data != "": | |
print(inp) | |
out = str(data) | |
rl = len(out) | |
print(f'rl:: {rl}') | |
c=1 | |
for i in str(out): | |
if i == " " or i=="," or i=="\n": | |
c +=1 | |
print (f'c:: {c}') | |
json_out = compress_data(c,inp,out) | |
out = str(json_out) | |
try: | |
json_out=format_json(json_out) | |
except Exception as e: | |
print (e) | |
chart_out = get_chart(str(json_out)) | |
chart_html=mm(chart_out) | |
print(chart_out) | |
else: | |
rawp = "Provide a valid data source" | |
history.clear() | |
history.append((inp,rawp)) | |
yield "", history,chart_html,chart_out,json_out | |
################################# | |
def clear_fn(): | |
return "",[(None,None)] | |
with gr.Blocks() as app: | |
gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer + Web</h1><h3>Summarize Data of unlimited length</h3>""") | |
chatbot = gr.Chatbot(label="Mixtral 8x7B Chatbot",show_copy_button=True) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt=gr.Textbox(label = "Instructions (optional)") | |
with gr.Column(scale=1): | |
button=gr.Button() | |
#models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True) | |
with gr.Row(): | |
stop_button=gr.Button("Stop") | |
clear_btn = gr.Button("Clear") | |
with gr.Row(): | |
with gr.Tab("Text"): | |
data=gr.Textbox(label="Input Data (paste text)", lines=6) | |
with gr.Tab("File"): | |
file=gr.Files(label="Input File(s) (.pdf .txt)") | |
with gr.Tab("Folder"): | |
directory=gr.File(label="Folder", file_count='directory') | |
with gr.Tab("Raw HTML"): | |
url = gr.Textbox(label="URL") | |
with gr.Tab("PDF URL"): | |
pdf_url = gr.Textbox(label="PDF URL") | |
with gr.Tab("PDF Batch"): | |
pdf_batch = gr.Textbox(label="PDF URL Batch (comma separated)") | |
m_box=gr.HTML() | |
e_box=gr.Textbox() | |
json_out=gr.JSON() | |
#text=gr.JSON() | |
#inp_query.change(search_models,inp_query,models_dd) | |
clear_btn.click(clear_fn,None,[prompt,chatbot]) | |
#go=button.click(summarize,[prompt,chatbot,report_check,chart_check,data,file,directory,url,pdf_url,pdf_batch],[prompt,chatbot,e_box,json_out]) | |
go=button.click(summarize,[prompt,chatbot,data,file,directory,url,pdf_url,pdf_batch],[prompt,chatbot,m_box,e_box,json_out]) | |
stop_button.click(None,None,None,cancels=[go]) | |
app.queue(default_concurrency_limit=20).launch(show_api=False) | |