Spaces:
Runtime error
Runtime error
import gradio as gr | |
#import urllib.request | |
#import requests | |
#import bs4 | |
#import lxml | |
import os | |
#import subprocess | |
from huggingface_hub import InferenceClient,HfApi | |
import random | |
import json | |
import datetime | |
#from query import tasks | |
from agent import ( | |
PREFIX, | |
COMPRESS_DATA_PROMPT, | |
COMPRESS_DATA_PROMPT_SMALL, | |
LOG_PROMPT, | |
LOG_RESPONSE, | |
) | |
api=HfApi() | |
client = InferenceClient( | |
"mistralai/Mixtral-8x7B-Instruct-v0.1" | |
) | |
def parse_action(string: str): | |
print("PARSING:") | |
print(string) | |
assert string.startswith("action:") | |
idx = string.find("action_input=") | |
print(idx) | |
if idx == -1: | |
print ("idx == -1") | |
print (string[8:]) | |
return string[8:], None | |
print ("last return:") | |
print (string[8 : idx - 1]) | |
print (string[idx + 13 :].strip("'").strip('"')) | |
return string[8 : idx - 1], string[idx + 13 :].strip("'").strip('"') | |
VERBOSE = True | |
MAX_HISTORY = 100 | |
MAX_DATA = 1000 | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def run_gpt( | |
prompt_template, | |
stop_tokens, | |
max_tokens, | |
seed, | |
purpose, | |
**prompt_kwargs, | |
): | |
print(seed) | |
generate_kwargs = dict( | |
temperature=0.9, | |
max_new_tokens=max_tokens, | |
top_p=0.95, | |
repetition_penalty=1.0, | |
do_sample=True, | |
seed=seed, | |
) | |
content = PREFIX.format( | |
timestamp=timestamp, | |
purpose=purpose, | |
) + prompt_template.format(**prompt_kwargs) | |
if VERBOSE: | |
print(LOG_PROMPT.format(content)) | |
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
#formatted_prompt = format_prompt(f'{content}', history) | |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
resp = "" | |
for response in stream: | |
resp += response.token.text | |
#yield resp | |
if VERBOSE: | |
print(LOG_RESPONSE.format(resp)) | |
return resp | |
def compress_data(c,purpose, task, history): | |
seed=random.randint(1,1000000000) | |
print (c) | |
#tot=len(purpose) | |
#print(tot) | |
divr=int(c)/MAX_DATA | |
divi=int(divr)+1 if divr != int(divr) else int(divr) | |
chunk = int(int(c)/divr) | |
print(f'chunk:: {chunk}') | |
print(f'divr:: {divr}') | |
print (f'divi:: {divi}') | |
out = [] | |
#out="" | |
s=0 | |
e=chunk | |
print(f'e:: {e}') | |
new_history="" | |
task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n' | |
for z in range(divi): | |
print(f's:e :: {s}:{e}') | |
hist = history[s:e] | |
resp = run_gpt( | |
COMPRESS_DATA_PROMPT_SMALL, | |
stop_tokens=["observation:", "task:", "action:", "thought:"], | |
max_tokens=2048, | |
seed=seed, | |
purpose=purpose, | |
task=task, | |
knowledge=new_history, | |
history=hist, | |
) | |
new_history = resp | |
print (resp) | |
out+=resp | |
e=e+chunk | |
s=s+chunk | |
resp = run_gpt( | |
COMPRESS_DATA_PROMPT, | |
stop_tokens=["observation:", "task:", "action:", "thought:"], | |
max_tokens=1024, | |
seed=seed, | |
purpose=purpose, | |
task=task, | |
knowledge=new_history, | |
history="All data has been recieved.", | |
) | |
print ("final" + resp) | |
history = "observation: {}\n".format(resp) | |
return history | |
def summarize(inp,file=None): | |
out = str(inp) | |
rl = len(out) | |
print(f'rl:: {rl}') | |
for i in str(out): | |
if i == " " or i=="," or i=="\n": | |
c +=1 | |
print (f'c:: {c}') | |
if rl > MAX_DATA: | |
print("compressing...") | |
rawp = compress_data(c,purpose,task,out) | |
print (rawp) | |
print (f'out:: {out}') | |
#history += "observation: the search results are:\n {}\n".format(out) | |
task = "complete?" | |
return rawp | |
################################# | |
examples =[ | |
"what are todays breaking news stories?", | |
"find the most popular model that I can use to generate an image by providing a text prompt", | |
"return the top 10 models that I can use to identify objects in images", | |
"which models have the most likes from each category?" | |
] | |
app = gr.ChatInterface( | |
fn=run, | |
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
title="Mixtral 46.7B Powered <br> Search", | |
examples=examples, | |
concurrency_limit=20, | |
) | |
''' | |
with gr.Blocks() as app: | |
with gr.Row(): | |
inp_query=gr.Textbox() | |
models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True) | |
with gr.Row(): | |
button=gr.Button() | |
stop_button=gr.Button("Stop") | |
text=gr.JSON() | |
inp_query.change(search_models,inp_query,models_dd) | |
go=button.click(test_fn,None,text) | |
stop_button.click(None,None,None,cancels=[go]) | |
''' | |
app.launch(server_port=7860,show_api=False) | |