Omnibus commited on
Commit
4f080ef
·
verified ·
1 Parent(s): 7fe3e02

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +166 -0
app.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_client import Client
3
+ from huggingface_hub import InferenceClient
4
+ import random
5
+ ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
6
+
7
+ models=[
8
+ "google/gemma-7b",
9
+ "google/gemma-7b-it",
10
+ "google/gemma-2b",
11
+ "google/gemma-2b-it",
12
+ "meta-llama/Llama-2-7b-chat-hf",
13
+ "codellama/CodeLlama-70b-Instruct-hf",
14
+ "openchat/openchat-3.5-0106",
15
+ "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
16
+ "mistralai/Mixtral-8x7B-Instruct-v0.1",
17
+ "mistralai/Mixtral-8x7B-Instruct-v0.2",
18
+ ]
19
+ clients=[
20
+ InferenceClient(models[0]),
21
+ InferenceClient(models[1]),
22
+ InferenceClient(models[2]),
23
+ InferenceClient(models[3]),
24
+ ]
25
+
26
+ VERBOSE=False
27
+
28
+ def load_models(inp):
29
+ if VERBOSE==True:
30
+ print(type(inp))
31
+ print(inp)
32
+ print(models[inp])
33
+ #client_z.clear()
34
+ #client_z.append(InferenceClient(models[inp]))
35
+ return gr.update(label=models[inp])
36
+
37
+ def format_prompt(message, history, cust_p):
38
+ prompt = ""
39
+ if history:
40
+ for user_prompt, bot_response in history:
41
+ prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
42
+ prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
43
+ if VERBOSE==True:
44
+ print(prompt)
45
+ #prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
46
+ prompt+=cust_p.replace("USER_INPUT",message)
47
+ return prompt
48
+
49
+ def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p):
50
+ #token max=8192
51
+ print(client_choice)
52
+ hist_len=0
53
+ client=clients[int(client_choice)-1]
54
+ if not history:
55
+ history = []
56
+ hist_len=0
57
+ if not memory:
58
+ memory = []
59
+ mem_len=0
60
+ if memory:
61
+ for ea in memory[0-chat_mem:]:
62
+ hist_len+=len(str(ea))
63
+ in_len=len(system_prompt+prompt)+hist_len
64
+
65
+ if (in_len+tokens) > 8000:
66
+ history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
67
+ yield history,memory
68
+ else:
69
+ generate_kwargs = dict(
70
+ temperature=temp,
71
+ max_new_tokens=tokens,
72
+ top_p=top_p,
73
+ repetition_penalty=rep_p,
74
+ do_sample=True,
75
+ seed=seed,
76
+ )
77
+ if system_prompt:
78
+ formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p)
79
+ else:
80
+ formatted_prompt = format_prompt(prompt, memory[0-chat_mem:],cust_p)
81
+ stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
82
+ output = ""
83
+ for response in stream:
84
+ output += response.token.text
85
+ yield [(prompt,output)],memory
86
+ history.append((prompt,output))
87
+ memory.append((prompt,output))
88
+ yield history,memory
89
+
90
+ if VERBOSE==True:
91
+ print("\n######### HIST "+str(in_len))
92
+ print("\n######### TOKENS "+str(tokens))
93
+
94
+ def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
95
+ print(chatblock)
96
+ tog = 0
97
+ if chatblock:
98
+ tog = 3
99
+ result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script")
100
+ out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
101
+ print(out)
102
+ return out
103
+
104
+ def clear_fn():
105
+ return None,None,None,None
106
+ rand_val=random.randint(1,1111111111111111)
107
+
108
+ def check_rand(inp,val):
109
+ if inp==True:
110
+ return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
111
+ else:
112
+ return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
113
+
114
+ with gr.Blocks() as app:
115
+ memory=gr.State()
116
+ gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
117
+ chat_b = gr.Chatbot(height=500)
118
+ with gr.Group():
119
+ with gr.Row():
120
+ with gr.Column(scale=3):
121
+ inp = gr.Textbox(label="Prompt")
122
+ sys_inp = gr.Textbox(label="System Prompt (optional)")
123
+ with gr.Accordion("Prompt Format",open=False):
124
+ custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3,value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
125
+ with gr.Row():
126
+ with gr.Column(scale=2):
127
+ btn = gr.Button("Chat")
128
+ with gr.Column(scale=1):
129
+ with gr.Group():
130
+ stop_btn=gr.Button("Stop")
131
+ clear_btn=gr.Button("Clear")
132
+ client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
133
+ with gr.Column(scale=1):
134
+ with gr.Group():
135
+ rand = gr.Checkbox(label="Random Seed", value=True)
136
+ seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
137
+ tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
138
+ temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
139
+ top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
140
+ rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99)
141
+ chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
142
+ with gr.Accordion(label="Screenshot",open=False):
143
+ with gr.Row():
144
+ with gr.Column(scale=3):
145
+ im_btn=gr.Button("Screenshot")
146
+ img=gr.Image(type='filepath')
147
+ with gr.Column(scale=1):
148
+ with gr.Row():
149
+ im_height=gr.Number(label="Height",value=5000)
150
+ im_width=gr.Number(label="Width",value=500)
151
+ wait_time=gr.Number(label="Wait Time",value=3000)
152
+ theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
153
+ chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
154
+
155
+
156
+ client_choice.change(load_models,client_choice,[chat_b])
157
+ app.load(load_models,client_choice,[chat_b])
158
+
159
+ im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
160
+
161
+ chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
162
+ go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
163
+
164
+ stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub])
165
+ clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory])
166
+ app.queue(default_concurrency_limit=10).launch()